Surrogate Models for efficient implementation of Building Performance Analysis and Optimization

November 2025

Gonçalo Roque Matias Araújo

PhD | Sustainable Energy Systems

Supervisors

Surrogate Models to improve Building Performance Analysis and Optimization

Paulo Manuel Cadete Ferrão

Instituto Superior Técnico Supervisor ferrao@tecnico.ulisboa.pt

Maria da Glória Gomes

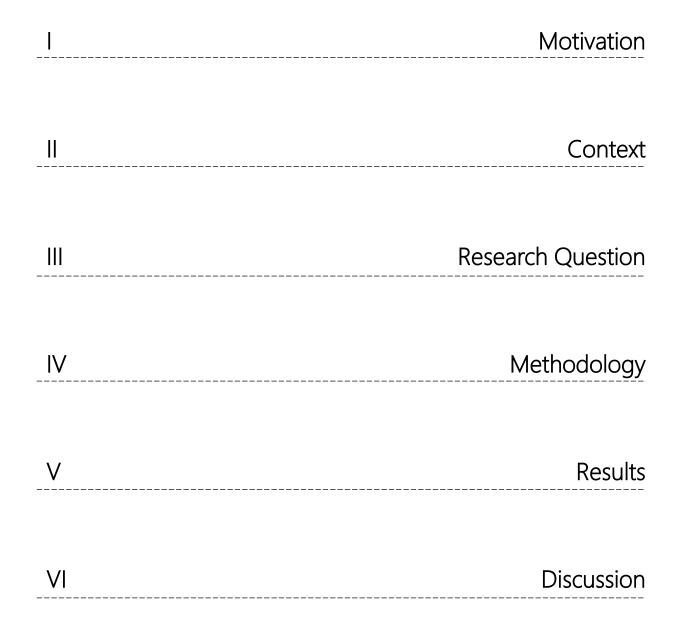
Instituto Superior Técnico Co-supervisor maria.gloria.gomes@tecnico.ulisboa.pt

Manuel de Arriaga Brito Correia Guedes

Instituto Superior Técnico Co-supervisor manuel.guedes@tecnico.ulisboa.pt

Structure

Surrogate Models to improve Building Performance Analysis and Optimization



Renovate the built environment

Optimize building design and construction

Renovate the built environment Optimize building design and construction

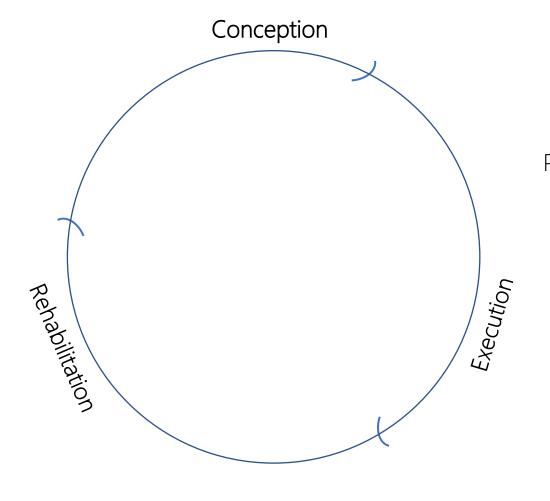
Population welfare

Economic growth

Renovate the built environment Optimize building design and construction

Population welfare

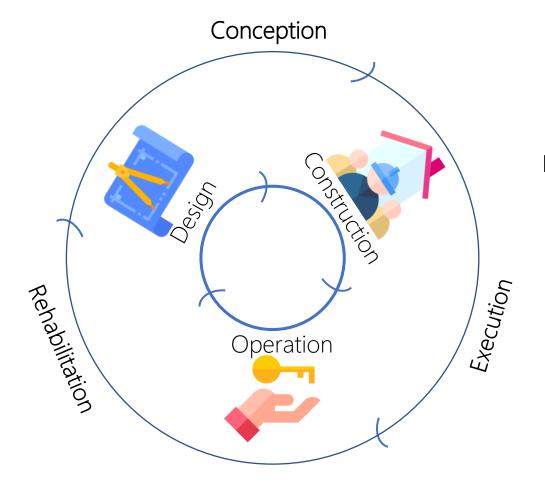
Economic growth



Renovate the built environment Optimize building design and construction

Population welfare

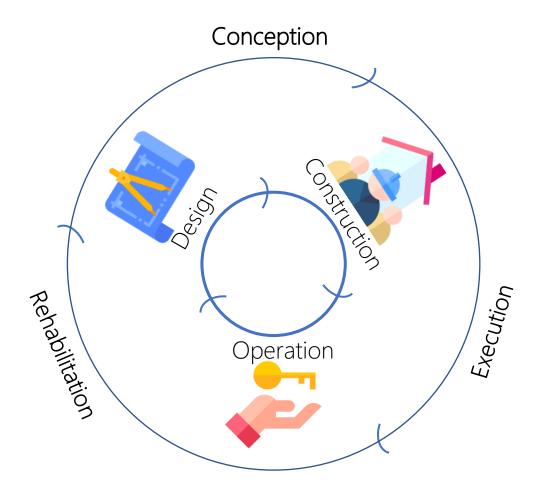
Economic growth



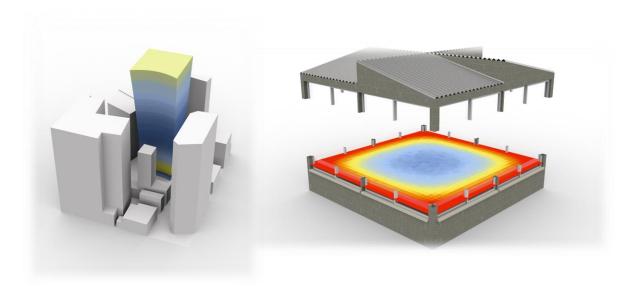
Renovate the built environment Optimize building design and construction

Population welfare

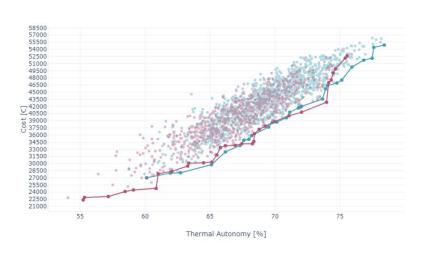
Economic growth



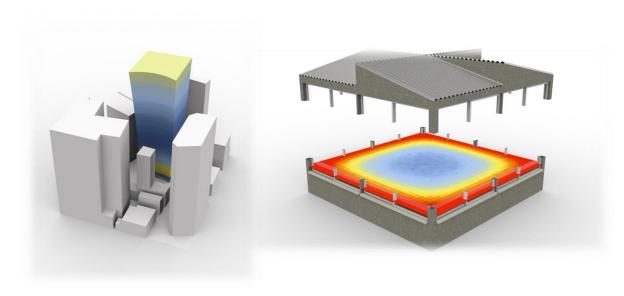
Building Performance Simulation tools



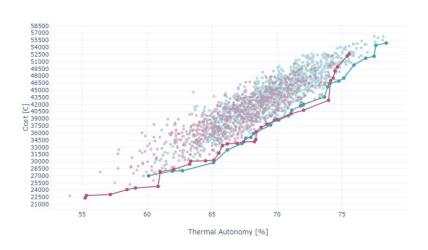
Analyses and Optimization Processes



Building Performance Simulation tools



Analyses and Optimization Processes



Building Performance Simulation tools

Time consuming [1]

Portability [2]

Expertise [3]

[1] Wei, T. (2013). A review of sensitivity analysis methods in building energy analysis. Renewable and Sustainable Energy Reviews, 20, 411–419.

[2] Crawley, D. B., Hand, J. W., Kummert, M., & Griffith, B. T. (2008). Contrasting the capabilities of building energy performance simulation programs. Building and Environment, 43(4), 661–673.

[3] Wang, H., & Zhai, Z. (John). (2016). Advances in building simulation and computational techniques: A review between 1987 and 2014. Energy and Buildings, 128, 319–335.

Analyses and Optimization Processes

Multiple Objectives [4, 5]

Multiple Algorithms [5, 6]

Building Performance Simulation tools

Time consuming [1]

Portability [2]

Expertise [3]

- [4] Evins, R. (2013). A review of computational optimisation methods applied to sustainable building design. Renewable and Sustainable Energy Reviews, 22, 230–245.
- [5] Nguyen, A., Reiter, S., & Rigo, P. (2014). A review on simulation-based optimization methods applied to building performance analysis. Applied Energy, 113, 1043–1058.
- [6] Waibel, C., Wortmann, T., Evins, R., & Carmeliet, J. (2019). Building energy optimization: An extensive benchmark of global search algorithms. Energy and Buildings, 187, 218–240.
- [1] Wei, T. (2013). A review of sensitivity analysis methods in building energy analysis. Renewable and Sustainable Energy Reviews, 20, 411–419.
- [2] Crawley, D. B., Hand, J. W., Kummert, M., & Griffith, B. T. (2008). Contrasting the capabilities of building energy performance simulation programs. Building and Environment, 43(4), 661–673.
- [3] Wang, H., & Zhai, Z. (John). (2016). Advances in building simulation and computational techniques: A review between 1987 and 2014. Energy and Buildings, 128, 319–335.

Analyses and Optimization Processes

Multiple Objectives [4, 5]

Multiple Algorithms [5, 6]

Building Performance Simulation tools

Time consuming [1]

Portability [2]

Expertise [3]

[4] Evins, R. (2013). A review of computational optimisation methods applied to sustainable building design. Renewable and Sustainable Energy Reviews, 22, 230–245.

[5] Nguyen, A., Reiter, S., & Rigo, P. (2014). A review on simulation-based optimization methods applied to building performance analysis. Applied Energy, 113, 1043–1058.

[6] Waibel, C., Wortmann, T., Evins, R., & Carmeliet, J. (2019). Building energy optimization: An extensive benchmark of global search algorithms. Energy and Buildings, 187, 218–240.

[1] Wei, T. (2013). A review of sensitivity analysis methods in building energy analysis. Renewable and Sustainable Energy Reviews, 20, 411–419.

[2] Crawley, D. B., Hand, J. W., Kummert, M., & Griffith, B. T. (2008). Contrasting the capabilities of building energy performance simulation programs. Building and Environment, 43(4), 661–673.

[3] Wang, H., & Zhai, Z. (John). (2016). Advances in building simulation and computational techniques: A review between 1987 and 2014. Energy and Buildings, 128, 319–335.

Analyses and Optimization Processes

Multiple Objectives [4, 5]

Multiple Algorithms [5, 6]

Building Performance Simulation tools

Time consuming [1]

Portability [2]

Expertise [3]

How to efficiently integrate AOP with building and urban projects?

Analyses and Optimization Processes

Multiple Objectives [4, 5]

Multiple Algorithms [5, 6]

Building Performance Simulation tools

Time consuming [1]

Portability [2]

Expertise [3]

How to efficiently integrate AOP with building and urban projects?

Make it quicker

Make it portable

Make it easier

Algorithmic Design and Analysis

Automates Design, Analysis, and Optimization processes. [7]

[7] Aguiar, R., Cardoso, C., & Leitão, A. (2017). Algorithmic design and analysis - fusing disciplines. Proceedings Catalog of the 37th Annual ACADIA 2017, 28–37.

[9] Araújo, G., Pereira, I., Leitão, A., & Correia Guedes, M. (2021). Conflicts in passive building performance: Retrofit and regulation of informal neighbourhoods. Frontiers of Architectural Research, 10(3), 625–638.

Algorithmic Design and Analysis

Automates Design, Analysis, and Optimization processes. [7]

BPS are still time-consuming for large models. [8]

Additional expertise to learn a programming language. [7]

[7] Aguiar, R., Cardoso, C., & Leitão, A. (2017). Algorithmic design and analysis - fusing disciplines. Proceedings Catalog of the 37th Annual ACADIA 2017, 28–37.

[9] Araújo, G., Pereira, I., Leitão, A., & Correia Guedes, M. (2021). Conflicts in passive building performance: Retrofit and regulation of informal neighbourhoods. Frontiers of Architectural Research, 10(3), 625–638.

Algorithmic Design and Analysis

Automates Design, Analysis, and Optimization processes. [7]

BPS are still time-consuming for large models. [8]

Additional expertise to learn a programming language. [7]

Surrogate Models

Quickly predict BPS outputs with fewer inputs. [10]

[7] Aguiar, R., Cardoso, C., & Leitão, A. (2017). Algorithmic design and analysis - fusing disciplines. Proceedings Catalog of the 37th Annual ACADIA 2017, 28–37.

[10] Wortmann, T., Costa, A., Nannicini, G., & Schroepfer, T. (2015). Advantages of surrogate models for architectural design optimization. Artificial Intelligence for Engineering Design , Analysis and Manufacturing, 29(4), 471–481.

[9] Araújo, G., Pereira, I., Leitão, A., & Correia Guedes, M. (2021). Conflicts in passive building performance: Retrofit and regulation of informal neighbourhoods. Frontiers of Architectural Research, 10(3), 625–638.

[11] Alizadeh, R., Allen, J. K., & Mistree, F. (2020). Managing computational complexity using surrogate models: a critical review. Research in Engineering Design, 31(3), 275–298.

e Studies Discussion

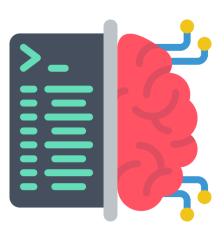
Algorithmic Design and Analysis

Automates Design, Analysis, and Optimization processes. [7]

BPS are still time-consuming for large models. [8]

Additional expertise to learn a programming language. [7]

[9] Araújo, G., Pereira, I., Leitão, A., & Correia Guedes, M. (2021). Conflicts in passive building performance: Retrofit and regulation of informal neighbourhoods. Frontiers of Architectural Research, 10(3), 625–638.



Surrogate Models

Quickly predict BPS outputs with fewer inputs. [10]

Are usually case-specific and do not apply outside the study's boundaries. [11]

Reduces BPS expertise but requires expertise to develop and test the models. [10]

[10] Wortmann, T., Costa, A., Nannicini, G., & Schroepfer, T. (2015). Advantages of surrogate models for architectural design optimization. Artificial Intelligence for Engineering Design , Analysis and Manufacturing, 29(4), 471–481.

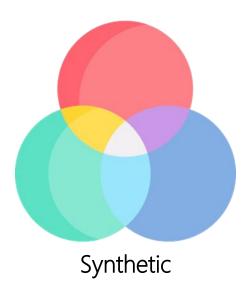
[11] Alizadeh, R., Allen, J. K., & Mistree, F. (2020). Managing computational complexity using surrogate models: a critical review. Research in Engineering Design, 31(3), 275–298.

Flexible framework to develop Surrogate Models and integrate them with AOP.

Flexible framework to develop Surrogate Models and integrate them with AOP.

Iterative

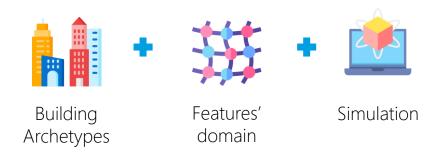
Existing



$$f(x_1, x_2, ..., x_n) = y$$

$$f\left(\begin{bmatrix} x_{11} & \cdots & x_{1n} \\ \vdots & \ddots & \vdots \\ x_{m1} & \cdots & x_{mn} \end{bmatrix}\right) = \begin{bmatrix} y_1 \\ \vdots \\ y_m \end{bmatrix}$$

where m represents combinations of the features' domain



We can develop multiple building models that vary along specified domains of different features, simulate them, and build a database.

Comprehensive feedback of the features impact in simulation results.

Surrogate Models for multiple analysis and optimization problems.

Highly detailed database.

Simulation and computation times exponentially increase with the number of features and simulation types, to the point of being unfeasible.



Iterative

$$f(x_1, x_2, ..., x_i) = min(o_1, o_2, ..., o_j)$$

$$f\left(\begin{bmatrix} x_{11} & \cdots & x_{1i} \\ \vdots & \ddots & \vdots \\ x_{m1} & \cdots & x_{mi} \end{bmatrix}\right) = \begin{bmatrix} o_{11} & \cdots & o_{1j} \\ \vdots & \ddots & \vdots \\ o_{m1} & \cdots & o_{mj} \end{bmatrix}$$

where m represents the number of iterations in the optimization

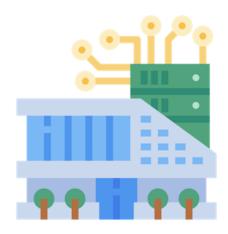
We can develop building optimization problems and build a database from the explored solutions' variables and objectives.

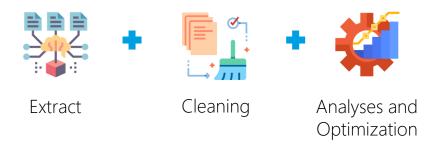
Less computational time than feature domains depending on the number of iterations.

Can support a high number of features.

Can support a high number of objectives.

Specific to the optimization problem at hand.





Extract building features from existing building databases and develop surrogate models for multiple AOP.

Database with real values.

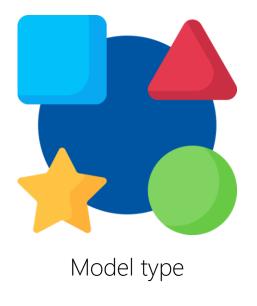
Might not require simulations.

Surrogate Models for multiple analysis and optimization problems.

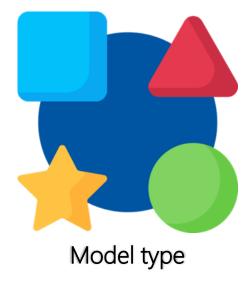
Noisy and imbalanced data.

Often does not feature many objectives.

Surrogate Models

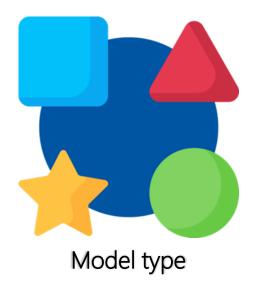


Model deployment



Regression Models

Methodology



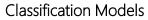
Key Performance Indicators

Accuracy

Precision

Recall

F1-score

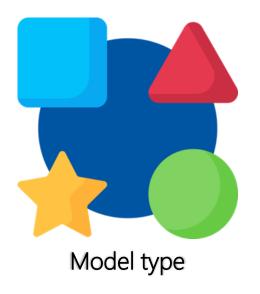


Regression Models

Models that predict discrete target outputs.

Logistic regression

Ensemble models

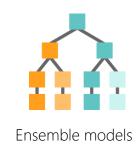


Key Performance Indicators

Accuracy	Mean Absolute Error (MAE)
Precision	Mean Squared Error (MSE)
Recall	Mean Average Percent Error (MAPE)
F1-score	Coefficient of determination (R ² score)

Models that predict **discrete** target outputs.

Neural Networks Logistic regression



Regression Models

Models that predict continuous target outputs.

Neural Networks

Linear regression

Ensemble models

Interpolation

Model tuning

Key Performance Indicators

Accuracy Mean Absolute Error (MAE)

Precision Mean Squared Error (MSE)

Recall Mean Average Percent Error (MAPE)

F1-score Coefficient of determination (R² score)

Hyperparameter optimization

Model tuning

Key Performance Indicators

Accuracy Mean Absolute Error (MAE)

Precision Mean Squared Error (MSE)

Recall Mean Average Percent Error (MAPE)

F1-score Coefficient of determination (R² score)

Model tuning

Key Performance Indicators

Accuracy	Mean Absolute Error (MAE)
Precision	Mean Squared Error (MSE)
Recall	Mean Average Percent Error (MAPE)
F1-score	Coefficient of determination (R ² score)

Feature Engineering

Hyperparameter optimization

Clean, change, and develop features

ers Create new features

Select relevant features

Model tuning

Key Performance Indicators

Accuracy	Mean Absolute Error (MAE)
Precision	Mean Squared Error (MSE)
Recall	Mean Average Percent Error (MAPE)
F1-score	Coefficient of determination (R ² score)

Feature Engineering

Clean, change, and develop features

Select relevant features

Hyperparameter optimization

Optimize the model's parameters for best suitable KPI

Solver

Learning rate

Hidden layer sizes

Ensemble models

Number of estimators

Depth

Samples split

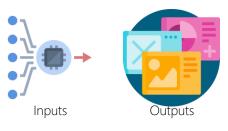
Linear regression

Polynomial degree

Interpolation

Solver

Model deployment



User interactions

Case studies with different AOP and BID

Design

Construction

Retrofit

Synthetic

Optimization

Existing

Model deployment

Programming

Web App

Case studies with different AOP and BID

Design

Construction

Retrofit

Synthetic

Optimization

Existing

Case Studies

Surrogate Models to improve Building Performance Analysis and Optimization

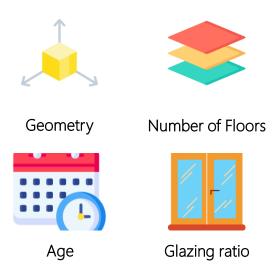
Retrofit

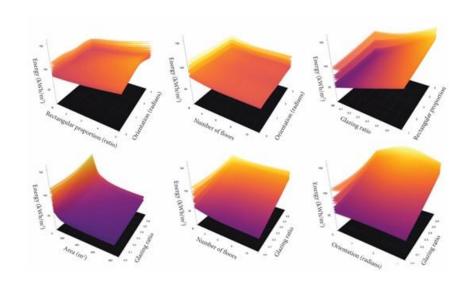
Design

Construction period	Number	Wall U_Value (kWh/m²)	Roof U_Value (W/m².ºC)	Floor U_Value (W/m².ºC)	Window U_Value (W/m².°C)	Wall retrofit U-value (W/m².ºC)	Roof retrofit U-value (W/m².ºC)
<1919	1	2.78	1.99	1.80	2.69	0.61	0.63
1919-1945	2	2.78	1.99	1.80	2.69	0.61	0.63
1946-1960	3	1.49	1.99	1.80	2.69	0.57	0.63
1961-1970	4	1.08	1.99	3.03	2.69	0.49	0.63
1971-1980	5	1.26	1.99	3.03	2.69	0.53	0.63
1981-1990	6	0.50	1.99	3.03	2.69	0.32	0.63
1991-1995	7	0.49	1.99	3.03	2.69	0.32	0.63
1996-2000	8	0.46	1.99	2.31	2.69	0.29	0.63
2001-2005	9	0.25	1.99	2.31	2.69	0.19	0.63
>2006	10	0.25	1.99	2.31	2.69	0.19	0.63

Urban area in Lisbon

Data is retrieved from GIS file by extraction of the buildings':

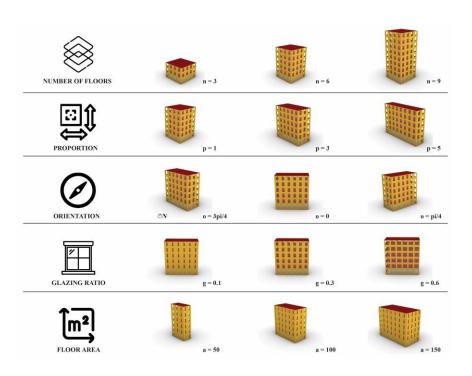


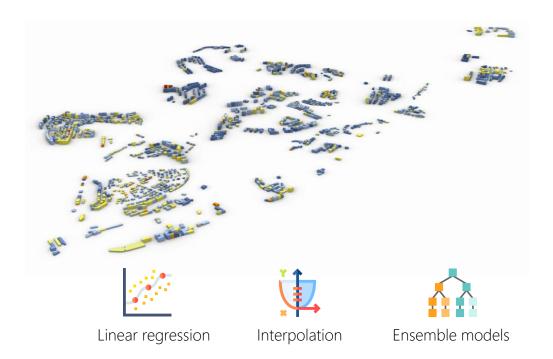


E(c, n, p, o, g, a) = Annual Energy Loads [kWh/m²]

$$f\left(\begin{bmatrix} c_1 & n_1 & p_1 & o1 & g_1 & a_1 \\ c_1 & n_1 & p_1 & o1 & g_1 & a_1 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ c_i & n_i & p_i & oi & g_i & a_i \end{bmatrix}\right) = \begin{bmatrix} E_1 \\ E_2 \\ \vdots \\ E_i \end{bmatrix}$$

Create a dataset that encompasses a grid-based set of feature values.



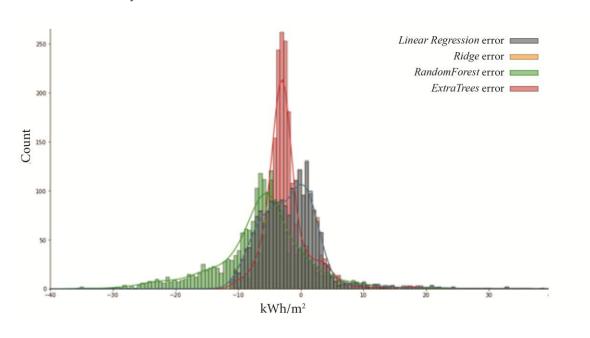


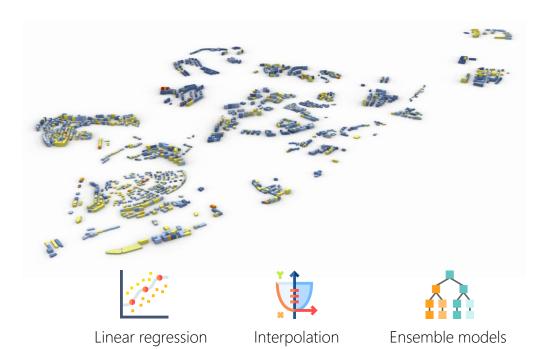
	Linear Regression	Ridge	Random Forest	Extra Trees
Mean Error (kWh/m²)	15.85	15.79	-6.06	-2.21
Root Mean Squared Error (kWh/m²)	15.40	15.40	9.88	5.44
R ² score	0.64	0.64	0.85	0.95

Regression Models

Results are used to train Surrogate models.

The case study simulation results are used to validate and select the best model:



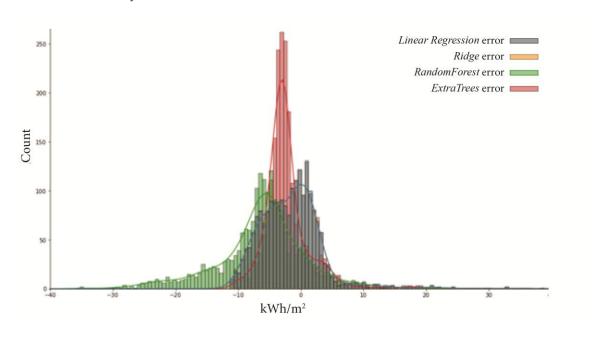


	Linear Regression	Ridge	Random Fores	Extra Trees
Mean Error	15.85	15.79	-6.06	-2.21
(kWh/m²)				
Root Mean Squared Error (kWh/m²)	15.40	15.40	9.88	5.44
R ² score	0.64	0.64	0.85	0.95

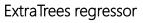
Regression Models

Results are used to train Surrogate models.

The case study simulation results are used to validate and select the best model:



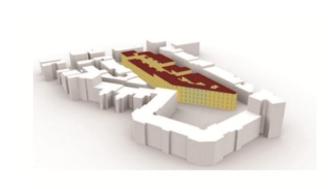
Case Studies

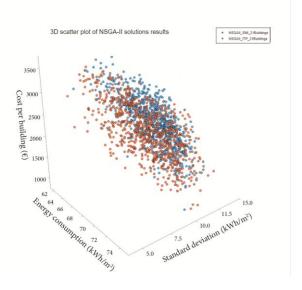


$$\frac{\sum_{i=1}^{n} annual \ loads_i}{n} \ [kWh/m^2]$$

$$\sigma\left(\bigcup_{i=1}^{n} annual \ loads_{i}\right) [kWh/m^{2}] \qquad \qquad \frac{\sum_{i=1}^{n} Cost_{i}}{n} [\in]$$

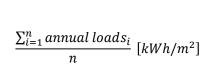
$$\frac{\sum_{i=1}^{n} Cost_{i}}{n} [\in]$$

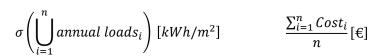




Case Studies







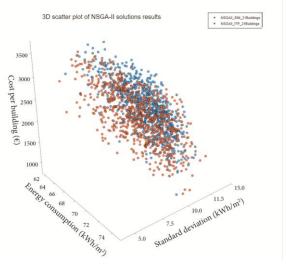
$$\frac{\sum_{i=1}^{n} Cost_{i}}{n} [\in]$$

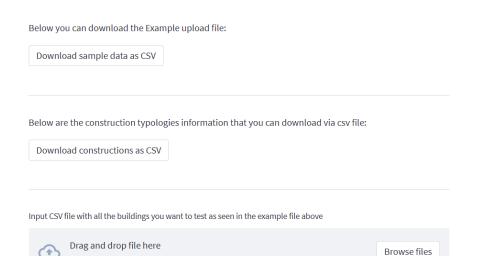
Speed up factor of 85x

elapsed	time	(seconds)	

	Dataset simulation	Optimization
Surrogate model	0.08	791.99
Simulation	5820.00	67516.70

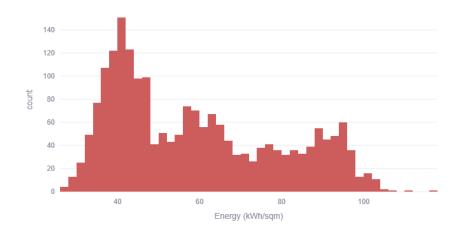
ExtraTrees regressor





Predict annual energy loads

Limit 200MB per file



ExtraTrees regressor

Model is deployed in a web app prototype

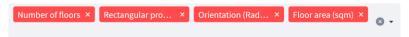
Prediction of input buildings' energy use

Optimization of building design

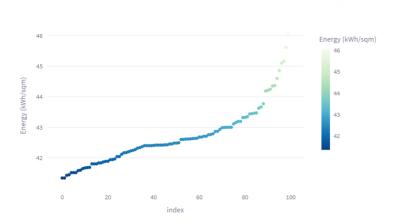
Building design Optimization

In this section you can select the design variables and their boundaries for a building and optimize its values for minimum annual energy loads

Select the design variables you wish to optimize:



Number of floors - boundaries



ExtraTrees regressor

Model is deployed in a web app prototype

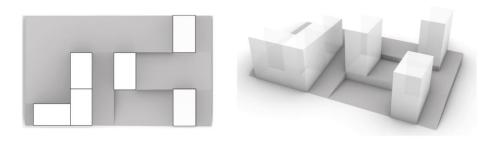
Prediction of input buildings' energy use

Optimization of building design

Results

Surrogate Models to improve Building Performance Analysis and Optimization

Construction



Optimization of construction materials for a 6 building block design

Variables:

 $(w, r, f, w_i) \in \{0, 1, 2\}$

 $w \rightarrow wall \ possible \ constructions$

 $r \rightarrow roof \ possible \ constructions$

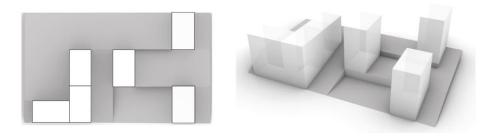
 $f \rightarrow floor\ possible\ constructions$

 $w_i \rightarrow window \ possible \ constructions$

Iterative

Use previous iterations of a simulation-based optimization to train surrogate models capable of predicting the specified objectives

$$g\left(\begin{bmatrix} (w,r,f,w_i)_{11} & \cdots & (w,r,f,w_i)_{1n} \\ \vdots & \ddots & \vdots \\ (w,r,f,w_i)_i & \cdots & (w,r,f,w_i)_{in} \end{bmatrix}\right) = \begin{bmatrix} f_{1_1} & f_{2_1} & f_{3_1} \\ \vdots & \vdots & \vdots \\ f_{1_i} & f_{2_i} & f_{3_i} \end{bmatrix}$$



Optimization of construction materials for a 6 building block design

Objectives:

$$f_{1}(w,r,f,w_{i}) = \sum_{i=1}^{n} Heating_{i} + Cooling_{i}$$

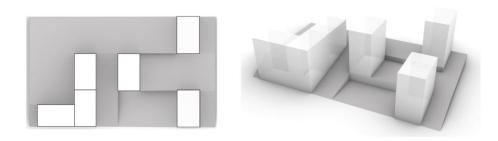
$$f_{2}(w,r,f,w_{i}) = \sigma \left(\bigcup_{i=1}^{n} Heating_{i} + Cooling_{i} \right)$$

$$f_3(w,r,f,w_i) = \sum_{i=1}^n Cost_i$$

Iterative

Use previous iterations of a simulation-based optimization to train surrogate models capable of predicting the specified objectives

$$g\left(\begin{bmatrix} (w,r,f,w_i)_{11} & \cdots & (w,r,f,w_i)_{1n} \\ \vdots & \ddots & \vdots \\ (w,r,f,w_i)_i & \cdots & (w,r,f,w_i)_{in} \end{bmatrix}\right) = \begin{bmatrix} f_{1_1} & f_{2_1} & f_{3_1} \\ \vdots & \vdots & \vdots \\ f_{1_i} & f_{2_i} & f_{3_i} \end{bmatrix}$$

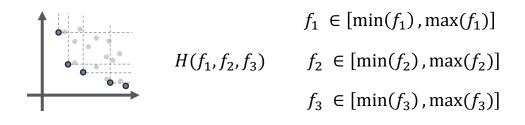


Optimization of construction materials for a 6 building block design

Objectives:

$$f_4(i_0,...,i_n) = R^2(test, predictions)$$

 $i \in [6,300]$ —Number of filters
 $n = Number of layers$

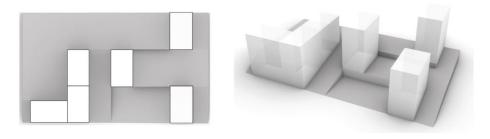


Hyperparameter optimization

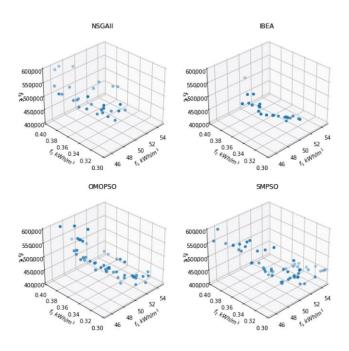
Maximize a Neural Network's R² score and the optimization algorithms' Hypervolume of non-dominated solutions.

Neural Network Sequential model

Metaheuristics

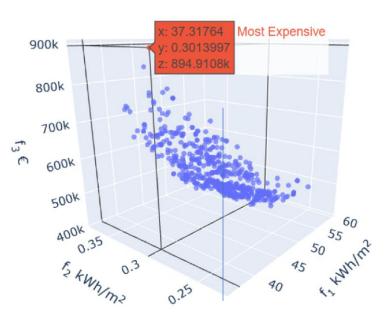


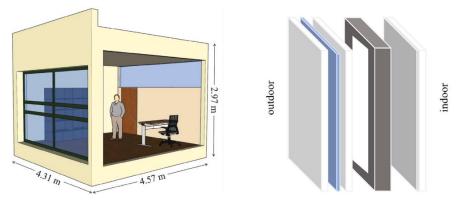
Optimization of construction materials for a 6 building block design



Neural Network Sequential model

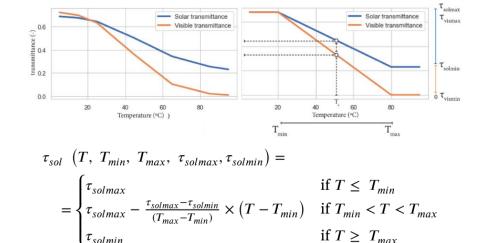
Model is deployed in a programming environment where a user can upload a building design solution, specify the variables and run the optimization with different algorithms





Optimization of Thermochromic glazing properties for an office space

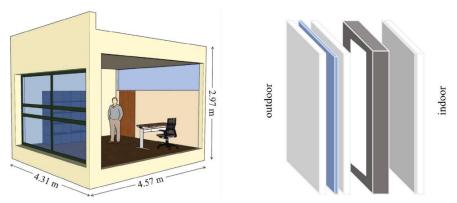
Variables:



Iterative

Use previous iterations of a simulation-based optimization to train surrogate models capable of predicting the specified objectives

$$g\left(\begin{bmatrix} T_{max_{1}} & T_{min_{1}} & \tau_{min_{1}} & \tau_{max_{1}} \\ T_{max_{2}} & T_{min_{2}} & \tau_{min_{2}} & \tau_{max_{2}} \\ \vdots & \vdots & \vdots & \vdots \\ T_{max_{i}} & T_{min_{i}} & \tau_{min_{i}} & \tau_{max_{i}} \end{bmatrix}\right) = \begin{bmatrix} f_{11} & f_{21} \\ f_{12} & f_{22} \\ \vdots & \vdots \\ f_{1i} & f_{2i} \end{bmatrix}$$



Optimization of Thermochromic glazing properties for an office space

Objectives:

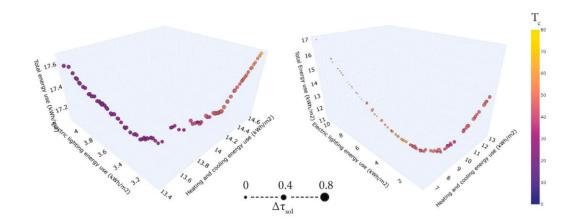
 $f_1(T_{min}T_{max}\tau_{min}\tau_{max}) = Heating + Cooling [kWh/m^2]$

 $f_2(T_{min}T_{max}\tau_{min}\tau_{max}) = Lighting [kWh/m^2]$

Use previous iterations of a simulation-based optimization to train surrogate models capable of predicting the specified objectives

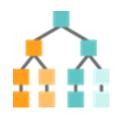
$$g\left(\begin{bmatrix} T_{max_{1}} & T_{min_{1}} & \tau_{min_{1}} & \tau_{max_{1}} \\ T_{max_{2}} & T_{min_{2}} & \tau_{min_{2}} & \tau_{max_{2}} \\ \vdots & \vdots & \vdots & \vdots \\ T_{max_{i}} & T_{min_{i}} & \tau_{min_{i}} & \tau_{max_{i}} \end{bmatrix}\right) = \begin{bmatrix} f_{11} & f_{21} \\ f_{12} & f_{22} \\ \vdots & \vdots \\ f_{1i} & f_{2i} \end{bmatrix}$$

Optimization of Thermochromic glazing properties for an office space



ExtraTrees regressor

Case Studies



Model is deployed in a programming environment where the user can upload weather file, specify variable boundaries and run the optimizations

$$g\left(\begin{bmatrix}T_{max_{1}} & T_{min_{1}} & \tau_{min_{1}} & \tau_{max_{1}} \\ T_{max_{2}} & T_{min_{2}} & \tau_{min_{2}} & \tau_{max_{2}} \\ \vdots & \vdots & \vdots & \vdots \\ T_{max_{i}} & T_{min_{i}} & \tau_{min_{i}} & \tau_{max_{i}}\end{bmatrix}\right) = \begin{bmatrix}f_{11} & f_{21} \\ f_{12} & f_{22} \\ \vdots & \vdots \\ f_{1i} & f_{2i}\end{bmatrix}$$

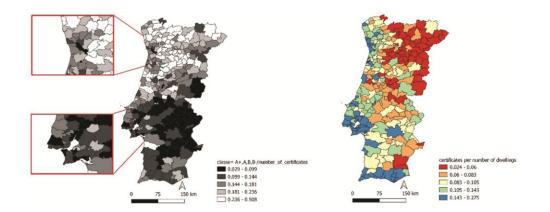
Results

Surrogate Models to improve Building Performance Analysis and Optimization

Existing

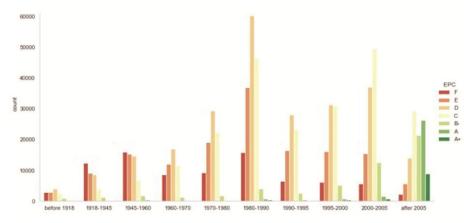
Retrofit

Design

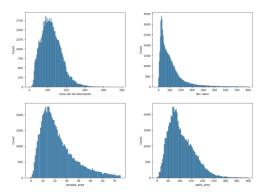


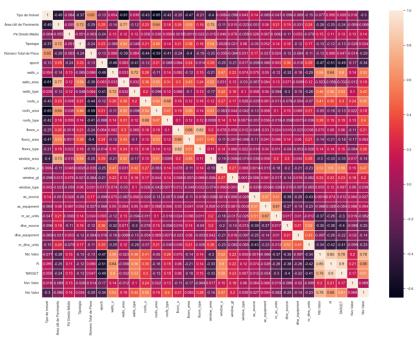
Portugal's Energy Performance Certificates (EPC)

Data is retrieved from csv file by extraction of the certificates' features:



EPC labels histogram by construction period

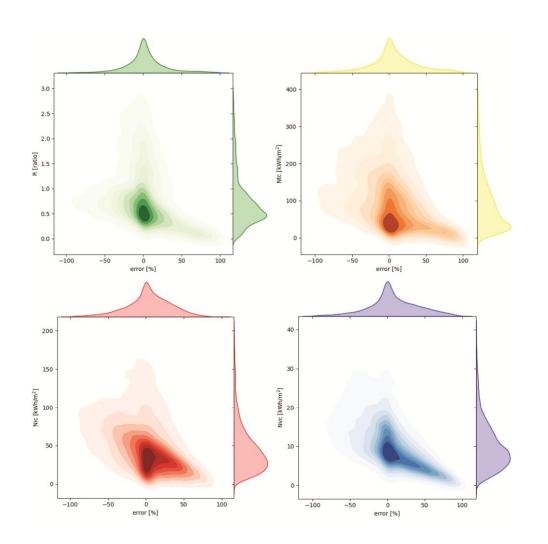




Feature Engineering

Apply feature engineering to obtain a balanced database for both features and prediction targets:

Clean outliers Select relevant features



Regression Models

Results are used to train Surrogate models and select the best one between the lower number of features and higher R² score.

Model training and performance indicators results.

		R [ratio]		Ntc [kWh/m ²]		Nic [kWh/m ²]		Nvc [kWh/m ²]	
k-best features	Model	R^2	RMSE	R^2	RMSE	R^2	RMSE	R^2	RMSE
10	ET	0.74	0.26	0.58	55.70	0.61	19.11	0.31	5.85
	MLP	0.71	0.27	0.51	60.22	0.55	20.46	0.16	6.43
	GB	0.69	0.28	0.50	60.98	0.53	20.89	0.14	6.51
15	ET	0.82	0.22	0.72	45.30	0.65	18.07	0.36	5.63
	MLP	0.77	0.24	0.66	49.91	0.57	20.05	0.19	6.33
	GB	0.76	0.25	0.65	51.07	0.57	20.01	0.17	6.39
20	ET	0.84	0.21	0.79	39.77	0.67	17.70	0.41	5.41
	MLP	0.78	0.24	0.72	45.29	0.58	19.77	0.23	6.15
	GB	0.78	0.24	0.73	44.87	0.57	19.96	0.24	6.14
25	ET	0.85	0.20	0.80	38.83	0.73	15.96	0.61	4.40
	MLP	0.80	0.23	0.74	44.33	0.67	17.66	0.47	5.11
	GB	0.80	0.23	0.75	43.19	0.68	17.22	0.33	5.75

General details Location EVORA Type of certificate Total energyl (kWh/year) Floor location of your house 20 k Total number of floors in your building Predict energy indicators! **Economic details** If you do not want to provide this information, the tool can estimate a value based on the Typology Click here to start

ExtraTrees Regressor with 20 features

Model is deployed in a web app prototype for the optimization of building retrofit for:

Homeowners

Policymaking

$$f\begin{pmatrix}\begin{bmatrix}r_1 & \cdots & r_n\\ \vdots & \ddots & \vdots\\ r_i & \cdots & r_{in}\end{bmatrix}\end{pmatrix} = \begin{bmatrix}f_{1_1} & f_{2_1} & f_{3_1}\\ \vdots & \vdots & \vdots\\ f_{1_i} & f_{2_i} & f_{3_i}\end{bmatrix}$$

$$f_1 = Ntc \left[kWh/m^2 \right]$$

 $f_2 = Return \ on \ investment \ [ratio]$ $f_3 = Retrofit \ cost \ [\in]$

Case Studies

Building data upload

Here you can upload the .csv file filled in as shown in "template_upload.csv", but with your buildings

Input CSV file with all the buildings you want to optimize

Drag and drop file here Browse files

Predict annual energy loads

Optimization

Here you can define the optimization problem variables, algorithm, and their parameters

Variables

Select Retrofits from government's retrofit available funding list

Wall insulation (\times	Floor insulation ×	Roof insulation (×
Window replace ×	Air-to-water pump ×	Efficient AC units ×
Solar panels for ×	Solar panels for ×	3

Retrofit costs

Wall retrofit cost (€/sqm)

Floor retrofit cost (€/sqm)

Roof retrofit cost (€/sam)

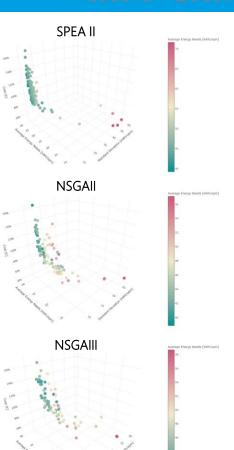
Window retrofit cost (€/sqm)

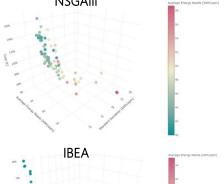
Air-to-water heat pump retrofit cost (€/unit)

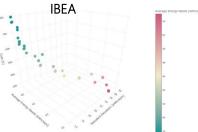
Efficient AC units retrofit cost (€/unit)

Solar panels for DHW retrofit cost (€/unit)

Solar panels for energy production retrofit cost (€/unit)







ExtraTrees Regressor with 20 features

Model is deployed in a web app prototype for the optimization of building retrofit for:

Homeowners

Policymaking

$$f\left(\begin{bmatrix} (r_{1}, \dots, r_{n})_{1} & \cdots & (r_{1}, \dots, r_{n})_{m} \\ \vdots & \ddots & \vdots \\ (r_{1}, \dots, r_{n})_{i} & \cdots & (r_{1}, \dots, r_{n})_{im} \end{bmatrix}\right) = \begin{bmatrix} f_{11} & f_{21} & f_{31} \\ \vdots & \vdots & \vdots \\ f_{1i} & f_{2i} & f_{3i} \end{bmatrix}$$

$$f_1 = \sum_{i=1}^{m} Ntc_i \left[kWh/m^2 \right] \qquad f_2 = \sigma \left(\bigcup_{i=1}^{m} Ntc_i \right) \left[kWh/m^2 \right] \qquad f_3 = Retrofit \ cost \ [\in]$$

Discussion

Surrogate Models to improve Building Performance Analysis and Optimization

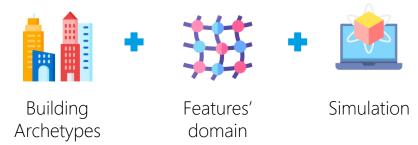
How to efficiently integrate AOP with building and urban projects?

Flexible framework to develop Surrogate Models and integrate them with AOP.

Existing

Model trained with a Synthetic BID.

"AD based surrogate models for simulation and optimization of large urban areas"



0.95 R² score, suitable for early design stages.

Simulation time decreased by 2 orders of magnitude.

Small set of 6 inputs requires minimum expertise.

Versatile and adaptable to any building or urban project.

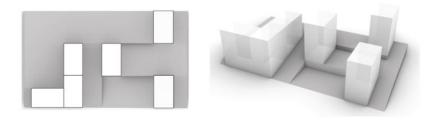
Small set of 6 inputs decreases building details.

High development time.

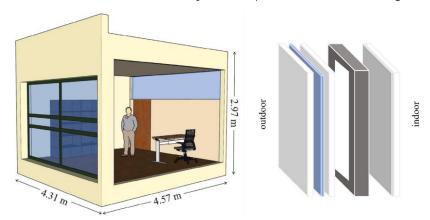
Increase in the **number of inputs exponentially increases** the model **development time**.

Process needs to be **repeated** for different simulation tools/outputs.

Model trained with BID obtained from optimization processes



"Surrogate Models for Efficient Multi-Objective Optimization of Building Performance"



"Multi-objective optimization of thermochromic glazing properties to enhance building energy performance"

0.97, 0.99 R² Score. Accuracy can be improved with hyperparameter optimization.

Lower development time than Synthetic databases.

Simulation time decreased by 2 orders of magnitude.

Supports any number of features.

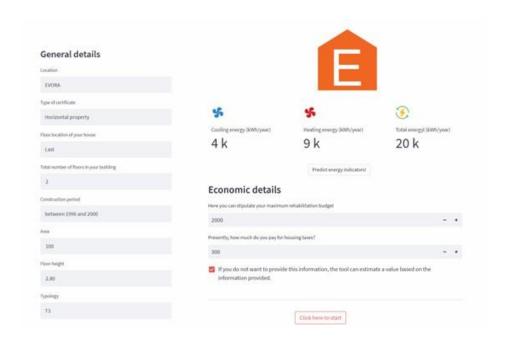
Supports multiple objectives.

Model is **case-specific** and not adaptable to problems outside the realms of the optimization.

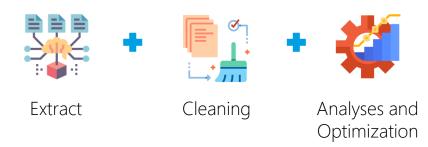
Increase in the **number of inputs (variables)** also **increases** the model **development time**.

Less accurate than Synthetic databases in predicting worse solutions.

Model trained with BID obtained from existing databases



"Optimizing building retrofit through data analytics: A study of multi-objective optimization and surrogate models derived from energy performance certificates"



No simulations required.

Supports any number of features.

Supports multiple objectives if available in the data.

Lower development time than generating other BID.

Accuracy **highly dependable** on the existing **data's quality**.

Limited outputs and prediction targets.

0.84 R² score, Less accurate than Synthetic and Optimization (Can improve depending on the data).

Discussion

	Problem	Scale	Objectives	Improvements	Inputs	Speed-up	R ²
	Retrofit	Urban	3	16%	6	≈85x	0.95
	Design	Building	1	8%	6		
	Material	Room	2	17%	4	≈200x	0.99
	Construction	Urban	3	22%	24	≈200x	0.97
:iii	Retrofit	Building	3	60%		_	
	Retrofit	Urban	3	25%	20	_	0.84/0.79

Discussion

Future projects

Explore new ways to develop a **smaller number of building samples** without loosing model accuracy and, therefore, be able to **increase the number of features and complexity** of a model.

Benchmark optimization and machine learning **algorithms** for multiple simulation outputs and analyses

Explore different feature engineering and selection techniques to improve the quality of the databases. **Experimental measurement** of building use and performance for data calibration.

Future applications

Assistance to field studies. Data feedback for field work.

Digital twin city models and databases. Enhance current data repositories.

Quick and easy Policymaking tools to achieve sustainable and economic goals.

On-the-fly assistance for design and execution projects. Enhanced collaborative work.

Research Outputs

Core Publications

Araujo, Gonçalo; Santos, Luís; Leitão, António & Gomes, R. (2022, April). Ad based surrogate models for simulation and optimization of large urban areas. In Proceedings of the 27th International Conference of the Association for Computer-Aided Architectural Design Research in Asia (CAADRIA 2022), Sydney, Australia (pp. 9-15).

Araújo; G. R., Gomes;, R., Gomes;, M. G., Guedes;, M. C., & Ferrão, P. (2023). Surrogate Models for Efficient Multi-Objective Optimization of Building Performance. Energies, 16, 4030. https://doi.org/https://doi.org/10.3390/en16104030

Araújo, G. R., Teixeira, H., Gomes, M. G., & Rodrigues, A. M. (2023). *Multi-objective optimization of thermochromic glazing properties to enhance building energy performance*. Solar Energy, *249*(October 2022), 446–456. https://doi.org/10.1016/j.solener.2022.11.043

Araújo, G., Gomes, R., Ferrão, P., & Gomes, M. da G. (2023). A study of multi-objective optimization with surrogate models derived from energy performance certificates. Energy and Built Environment.

Others

Araújo, Gonçalo; Teixeira, Henriqueta; Glória, G. M., & Moret, R. A (2022). Otimização de Envidraçados Termocrómicos para um Clima Mediterrânico. Congresso Construção 2022, 239.

Araújo, G., Pereira, I., Leitao, A., & Guedes, M. C. (2021). Conflicts in passive building performance: Retrofit and regulation of informal neighbourhoods. Frontiers of Architectural Research, 10(3), 625-638.

Aleixo, J., Araújo, G. R., & Guedes, M. C. (2021). Comparison of passive design strategies to improve living conditions: a study in Ondjiva, Southern Angola. Renewable Energy and Environmental Sustainability, 6, 21.

Guedes, M. C., Araújo, G., & Albuquerque, N. (2023). Thermal Comfort in Informal Settlements: Case Studies in Sub-Saharan Africa. In Climate Change and Sustainable Development (pp. 129-148). CRC Press.

Araújo, Gonçalo; Leitão, António, Inês Pereira; Gomes, Ricardo & Ferrão, Paulo (2021). *A non-linear surrogate model of building archetypes to speed up cities' adaptation to the post-carbon age.* In **Congresso MITPortugal 2021.**

Araújo, Gonçalo; Gomes, Ricardo & Ferrão, Paulo (2022). Surrogate models for timeconsuming building performance simulations and optimizations. In Congresso MITPortugal 2022.

3rd place at the PhD Open Days 2021 pitch competition.

Surrogate Models to improve Building Performance Analysis and Optimization

Thank you for listening!

