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a b s t r a c t 

The building stock is responsible for a large share of global energy consumption and greenhouse gas emissions, 
therefore, it is critical to promote building retrofit to achieve the proposed carbon and energy neutrality goals. 
One of the policies implemented in recent years was the Energy Performance Certificate (EPC) policy, which 
proposes building stock benchmarking to identify buildings that require rehabilitation. However, research shows 
that these mechanisms fail to engage stakeholders in the retrofit process because it is widely seen as a mandatory 
and complex bureaucracy. This study makes use of an EPC database to integrate machine learning techniques 
with multi-objective optimization and develop an interface capable of (1) predicting a building’s, or household’s, 
energy needs; and (2) providing the user with optimum retrofit solutions, costs, and return on investment. The 
goal is to provide an open-source, easy-to-use interface that guides the user in the building retrofit process. The 
energy and EPC prediction models show a coefficient of determination (R 2 ) of 0.84 and 0.79, and the optimization 
results for one case study EPC with a 2000 € budget limit in Évora, Portugal, show decreases of up to 60% in energy 
needs and return on investments of up to 7 in 3 years. 
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. Introduction 

One of the largest shares of energy consumption is associated with
he building stock (in Europe, it is responsible for 40% of the total en-
rgy consumption), and since a building’s lifetime can exceed 100 years
t is important to improve energy regulation and develop instruments
hat promote the reduction of greenhouse gas emissions without neglect-
ng thermal comfort and quality of life of its occupants [1] . Pasichnyi
t al. [2] and Pérez-Lombard et al. [3] point to regulation, audits, and
ertification as three basic policy instruments for enhancing energy ef-
ciency in buildings. In this context, building Energy Performance Cer-
ificates (EPCs) emerged to help achieve energy efficiency in buildings
ince the early 1990s [2] , and their main goals are threefold: (1) to in-
orm stakeholders of the building sector about building energy consump-
ion and performance [4] , (2) to decarbonize the building stock, and (3)
o enhance investment in more efficient and sustainable solutions and
ystems, as documented on the Building Directive update from 2018
5] . 

Building energy certification has been developed as a key policy in-
trument to improve buildings’ energy efficiency, decrease energy con-
umption, and provide more transparency on energy use in buildings. An
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nergy performance certificate (EPC) is a central element of the Energy
erformance Building Directive (EPBD). In 2002, the EU Parliament de-
ned EPC as ” a document recognized by a Member State or by a legal
erson designated by it, which indicates the energy performance of a
uilding or building unit ” [5,6] . 

Regarding building energy certification, Pérez-Lombard et al. [3] dis-
inguish three main advantages: (i) bench-marking, (ii) rating, and
iii) labeling. Nikolaou et al. [7] add (iv) building stock databases
nd methods for improving energy efficiency. Pasichnyi et al. [2] re-
iewed 79 papers focused on EPC applications from data analyses and
tated that most EPC data have wider applications than initially in-
ended by the EPC policy instrument. The detailed characterization
f the building stock provided by the EPC scheme can be applied in
he development of tools and applications enhancing energy efficiency
easures. 

Alongside, energy-efficient building retrofit is a key aspect to reduce
arbon emissions [8] , improving public health [9] , and creating new
obs [10] . Despite their multiple benefits and efforts to promote build-
ng retrofits, the retrofit rates worldwide remain low, usually less than
% per year [11] . One crucial barrier to this low number is the lack of
nowledge of which combinations of retrofits are most cost-effective. 
 

lsevier B.V. on behalf of KeAi Communication Co. Ltd. This is an open access 

 building retrofit through data analytics: A study of multi-objective op- 
es, Energy and Built Environment, https://doi.org/10.1016/j.enbenv. 

https://doi.org/10.1016/j.enbenv.2023.07.002
http://www.ScienceDirect.com
http://www.keaipublishing.com/en/journals/energy-and-built-environment/
mailto:goncalo.r.araujo@tecnico.ulisboa.pt
https://doi.org/10.1016/j.enbenv.2023.07.002
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.enbenv.2023.07.002


G.R. Araújo, R. Gomes, P. Ferrão et al. Energy and Built Environment xxx (xxxx) xxx 

ARTICLE IN PRESS 

JID: ENBENV [m5GeSdc; July 15, 2023;7:58 ] 

Table 1 

EPCs’ energy indicators. 

Indicators Description 

Nic Annual Nominal needs of useful energy for heating (kWh/ 𝑚 2 ) 
Ni Annual Reference needs of useful energy for heating (kWh/ 𝑚 2 ) 
Nvc Annual Nominal needs of useful energy for cooling (kWh/ 𝑚 2 ) 
Nv Annual Reference needs of useful energy for cooling (kWh/ 𝑚 2 ) 
Nac Annual Nominal needs of useful energy for the production of domestic hot water (kWh/ 𝑚 2 ) 
Na Annual Reference needs of useful energy for the production of domestic hot water (kWh/ 𝑚 2 ) 
Ntc Annual Total nominal primary energy needs (kWh/ 𝑚 2 ) 
Nt Annual Reference primary energy needs (kWh/ 𝑚 2 ) 

Table 2 

EPCs’ energy efficiency labels. 

Energy label R = Ntc / Nt 

A + R ≤ 0.25 
A 0.25 < R ≤ 0.5 
B 0.5 < R ≤ 0.75 
B- 0.75 < R ≤ 1 
C 1 < R ≤ 1.5 
D 1.5 < R ≤ 2 
E 2 < R ≤ 2.5 
F 2.5 < R ≤ 3 
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.1. Background 

A household’s EPC is issued by qualified experts (architects or en-
ineers) who audit the households and collect information regarding
uilding geometry, constructive solutions, heating, ventilation and air-
onditioning (HVAC) systems, domestic water heating systems (DHW),
nd energy production systems, to determine the energy performance
arameters and calculate energy performance indicators (including the
nergy label). Moreover, improvement measures and their impact on
he energy label and energy consumption are suggested on the EPC by
he experts [12] . 

The EPC considers numerical calculation methods based on the ISO
tandards (ISO 52000-1 [13] , 52003-1 [14] , 52010-1 [15] , 52016-1
16] , and 52018-1 [17] ) for heating, cooling, and domestic hot water
eeds and provide energy efficiency benchmark by considering refer-
nce values [18,19] . The energy needs indicators calculated for the en-
rgy certification process are summarized in Tables 1 and 2 . 

In most European countries, the energy efficiency labeling of a
ousehold assumes eight classes (from A+, the most energy-efficient to
, the least) [5] and is calculated by framing the parameter R = Ntc/Nt

n specific range values ( Table 2 ). 
The building EPC benchmarking system and its related renovation

olicies have significantly contributed to the improvement of build-
ngs’ energy use and to achieving the European renovation wave goals
20,21] . However, they still present constraints that are preventing cit-
zens and stakeholders from implementing building retrofits such as a
eneral lack of engagement and EPC data errors. 

The lack of awareness and engagement with the EPC system is dis-
ussed by Watts et al. [22] , which surveyed how people perceive EPCs,
heir importance, and if they implement the suggested retrofits. Results
how that the EPC scheme is perceived more as mandatory bureaucracy
nd most people do not follow retrofit indications. In addition to this,
ardy & Glew [23] showed that 36% to 62% of EPCs in the United
ingdom contain errors and that these are mostly caused by EPC asses-
ors. Consequently, the authors consider that new methodologies can be
eveloped to prevent misleading results and reduce input complexity,
nd conclude that ML has great potential to help tackle these issues.
hus, the use of ML techniques to create models capable of predicting
 building EPC or energy needs with easy-to-grasp inputs can help in:
1) identifying, controlling, and correcting issued EPCs with input er-
2 
ors [24] ; and (2) engaging the community with the EPC scheme and its
enefits [22] . 

Most studies regarding EPC surrogate models found in the literature
ocus on accurately predicting and validating existing EPCs. Buratti et al.
25] used an Artificial Neural Networks (ANN) model developed with
 database of 6500 EPCs received by the Umbria Region (central Italy).
he developed model allowed the authors to evaluate regional building
nergy consumption. Furthermore, the authors evaluated the accuracy
f the model and identified EPCs requiring data correction. To engage
he community with the EPC scheme, Khayatian et al. [26] simplify the
PCs inputs parameters and features, by developing a regression model
sing ANN, with acceptable accuracy and capable of predicting building
nergy consumption and EPC results with only 12 features. 

Such models can also be useful to improve households’ energy use
nd perform the best possible retrofits according to their specific needs
nd capabilities, by both reducing input complexity and allowing the ap-
lication of optimization techniques (2). In this sense, Fan & Xia [27] de-
eloped two optimization models to find the best building retrofit that
ielded maximum energy savings and minimum investment payback
ime. This is done considering the South African building EPC scheme
nd its tax incentive initiative program. 

Multi-Objective Optimization (MOO) is often used when dealing
ith complex systems such as building retrofits since multiple conflict-

ng objectives are typically entailed (e.g., better-performing buildings
ntail higher retrofit costs) [28] . When dealing with multiple objectives,
ptimum solutions are described as non-dominated solutions, which
annot improve in one objective, without harming the other [29] . Be-
ause most building retrofit optimization objectives are outputs either
rom time-consuming simulation or surrogate models and typically en-
ail multiple objectives, they are typically solved with metaheuristics
30] . 

.2. Research gap and goals 

As stated in the Renovation Wave program [20] , it is of critical im-
ortance to perform building retrofits as a way to reduce building energy
onsumption. In spite of multiple policies deployed to increase the ren-
vation wave, there are still some barriers preventing its success such as
nsufficient information on the current energy profile of buildings and
olicies [22] , lack of trust in the actual energy savings estimation [11] ,
ifficult decision-making processes [31] , and financial obstacles [8] . In
his sense, it is crucial to provide citizens and stakeholders with valu-
ble, accurate, and comprehensible information regarding their house
r building energy performance and the benefits of specific retrofit mea-
ures. The integration of MOO with EPC surrogate models enables the
evelopment of easy-to-use interfaces capable of optimizing any house-
old or building retrofit solution. This gives users valuable insight into
heir EPC applicable renovation policies and government funding with-
ut extensive knowledge and bureaucracy. 

The goal of this study is to strengthen the commitment to the reno-
ation wave program [20] by developing an interface capable of quickly
redicting and optimizing EPC indicators with easy-to-grasp inputs. Ma-
hine Learning techniques are applied to an EPC database of residen-
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Table 3 

EPCs’ database feature list for k-best = 20. 

General details Construction elements Equipment Glazing 

Property Wall type DHW source Window area [ 𝑚 2 ] 
Year Wall area [ 𝑚 2 ] Heating source Window type 
Area [ 𝑚 2 ] Roof type DHW type 
Height [m] Roof area [ 𝑚 2 ] Heating type 
Typology Floor type N ◦ DHW equip 
N ◦ floors N ◦ heating equip 
District 

Table 4 

Test set target values distribution and indicators. 

Nic [ 𝐤𝐖𝐡 ∕ 𝐦 

𝟐 ] Nvc [ 𝐤𝐖𝐡 ∕ 𝐦 

𝟐 ] Ntc [ 𝐤𝐖𝐡 ∕ 𝐦 

𝟐 ] R [ratio] 

count 5914 5914 5914 5914 
mean 10.46 1.90 96.10 0.72 
std 7.03 1.70 86.14 0.51 
min 0.00 0.00 0.00 0.00 
max 48.79 7.00 660.63 4.20 
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ial buildings in Portugal to develop regression models capable of pre-
icting a building or household’s annual energy needs, and EPC labels.
fterward, these models are integrated with a Multi-Objective Opti-
ization (MOO) process to provide the user with a range of optimum

etrofit solutions while estimating their impact on energy consumption
nd return on investment. This approach can be adapted to other coun-
ries’ databases and yield information regarding energy performances
nd how to manage retrofit and rehabilitation investments at a larger
cale. Moreover, researchers are provided with alternative approaches
or building retrofit and optimization that require less computational
ower and have fewer inputs than building performance simulation and
ptimization using complex models. Finally, these techniques can be ap-
lied to the development of tools or applications to enhance the retrofit
rocess by providing fast but accurate analysis of retrofit alternatives. 

. Methodology 

This research proposes the use of ML techniques with Python pro-
ramming language and the Sci-Kit Learn package [32] to develop an
nterface capable of engaging citizens and stakeholders in retrofitting
heir households and buildings by presenting the EPC prediction and
ptimization of the building retrofit process for a given budget. This
ncludes the optimization of retrofit solutions for different objectives
energy and financial) by considering significantly fewer inputs than
he energy certification process or building performance simulation.
he methodology followed in this work can be segmented into three
ub-sections: (1) Model development; (2) Multi-Objective Optimization
MOO); and (3) User interface - Case study ( Fig. 1 ). 

Sub-section (1) describes the development of regression models with
upervised learning algorithms. These models predict the EPC energy in-
icators and the EPC label ( Tables 1 and 2, Section 1.1 ). Initially, the
rst step is to clean the entire database by filtering noisy and inaccu-
ate EPC data such as the date of issue, non-residential households, and
nrealistic values of EPCs’ input features. Secondly, a feature selection
echnique is applied to select the most representative features of the
PC label values. The final database is split into a training and test set
hat is used to train, test, and compare the performance of three regres-
ion algorithms by measuring their Root Mean Squared Error (RMSE)
nd coefficient of determination (R 

2 ). A K-Fold cross-validation [33] is
erformed on the selected final model. 

Sub-section (2) comprises the integration of the ML model in a Multi-
bjective Optimization (MOO) process to (1) minimize an EPC’s total
nnual nominal primary energy needs - Ntc [ 𝑘𝑊 ℎ ∕ 𝑚 

2 ] ;(2) maximize the
orresponding energy and tax savings (Return on Investment (ROI), i.e.
he ratio between investment benefits and the cost of the investment);
nd (3) minimize the building retrofit cost. 

Sub-section (3) focuses on interface development and its illustration
n a case study. User inputs are defined, as well as analysis and visual-
zation methods. The interface requires that users collect and introduce
 different set of inputs representative of their household or building.
fterward, users obtain an estimation of their Nic, Nvc, Ntc , and EPC

abel ( Tables 1 and 2, Section 1.1 ) while being able to visualize their
esults interactively. The integrated optimization process allows users
o find the best retrofit solutions given a maximum retrofit budget and
xplore the results for different retrofit options. 

.1. Model development 

For database preprocessing, the first step consists of filtering unreal-
stic values and splitting the resulting database into a training and test
et for all variables and outputs. Then, feature selection techniques are
pplied to retrieve the most explainable features of the model [34] . For
he models’ training, the original training set is split into training and
est sets in which an Extra Trees (ET) ensemble algorithm [35] , a Multi-
ayer Perceptron (MLP) ANN [36,37] , and a Gradient Boosting (GB) for
3 
he regression problems [38] were used. These models have been exten-
ively used in the literature for regression problems [39] , particularly
n building energy-related problems [40] . 

For the development of the ML models, the Portuguese EPC database
s used, which contains over 800,000 certificates, and 88 features split
etween household details, opaque and glazed envelopes, and systems.
rom the whole database, all entries that were not issued under the 2006
ecree-Law [41] were removed, since the method of calculation of the
PC changed significantly due to the EPBD [6] . Additionally, all the
PCs without DHW equipment, all features with unrealistic values, and
amples with over 70% of null values for all features are removed. Af-
erward, the most important features to calculate the EPC are retrieved.
inally, from the 800,000 EPCs and a total of 88 features for the whole
ountry, 61 features and ≈ 740,000 entries were removed, ending up
ith a total of 25 features and ≈ 60,000 EPCs. Both continuous and
iscrete features are normalized into a [-1, 1] interval. The target pre-
iction values are illustrated in Table 4 by documenting their maximum,
inimum, mean, and standard deviation. 

The ML models prediction targets are the annual heating energy
eeds ( Nic ), annual cooling energy needs ( Nvc ), annual primary energy
eeds ( Ntc ) ( Table 1 ), and R ratio ( Table 2 ). The database with 60,000
PCs, is split by 33% (1/3) to build a model validation test set and
7% (2/3) to train the models. Three different ensemble regression al-
orithms from the Sci-Kit-learn library are explored: ET; MLP with 3
odes and 25, 50, and 25 neurons; and GB tested with default param-
ters. The models are trained with an increasing number of features
elected according to their k-best scores [42] and for each target output
ith k-best = 10, 15, 20, and 25 features ( Table 3 ). 

RMSE and R 

2 scores are logged as performance metrics for the mod-
ls’ regression outputs ( Nic, Nvc, Ntc, R ). Performance results for the
hree regression algorithms are compared and the best-performing al-
orithm is selected accordingly. The selected model is then subject to a
-fold cross-validation process [33] with k = 6 folds. This process splits
he testing subset into multiple (k) folds and yields less biased perfor-
ance results. 

.2. Multi-Objective optimization 

For the MOO problem, a Non-dominated Sorting Genetic Algorithm
I (NSGAII) [43] was used, since it demonstrated its efficiency for sim-
lar class problems in previous research [44,45] . The algorithm runs
ith a random generator object, a tournament selection method, and a
opulation size of 25, for a maximum of 250 iterations or convergence.
he MOO problem decision variables correspond to the EPC’s possible
etrofit solutions. 
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Fig. 1. Research workflow diagram. 
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The possible retrofits for one household are organized into differ-
nt intervention areas: walls, roofs, windows, heating equipment, and
omestic Hot Water (DHW) equipment. A MOO process that returns

he optimum retrofit options of an EPC is programmed, considering for
ach variable the option of having no retrofit and only those retrofits
hat represent an improvement against the original features. Finally,
he total retrofit cost is calculated according to standard construction
olutions, equipment costs, government funds, and typology ( Tables 5
nd 6 , adapted from POSEUR [46] ). 

The optimization’s objectives are the minimization of an EPC’s Ntc

 𝑜 1 - Eq. 1 ) and retrofit cost ( 𝑜 2 - Eq. 2 ), together with the maximization
f the retrofit’s Return on Investment over a period of 3 years (ROI)
 𝑜 3 - Eq. 3 ). 𝑜 1 is predicted by the surrogate model, 𝑜 2 is obtained from
ser inputs and retrofit costs from Table 5 , and 𝑜 3 𝑅𝑂𝐼 is obtained from
q. 4 . The Tax variable represents the tax benefits obtained from the
etrofit and is calculated by predicting the new EPC label and assigning
he respective tax deduction. Energy Savings ( 𝐸 𝑠 ) is computed by Eq. 5 ,
here 𝑝 represents the average kWh price for electricity in Portugal
4 
source: Eurostat [47] ), 𝐴 the floor area of the EPC, and 𝑡 the number
f years considered for the ROI calculation. 

 1 = 𝑚𝑖𝑛 ( 𝑁𝑡𝑐 𝑛𝑒𝑤 ) [ 𝑘𝑊 ℎ ∕ 𝑚 

2 ] (1)

 2 = 𝑚𝑖𝑛 ( 𝐶𝑜𝑠𝑡 ) [ e ] (2)

 3 = 𝑚𝑖𝑛 ( 𝑅𝑂𝐼) [ 𝑟𝑎𝑡𝑖𝑜 ] (3)

𝑂𝐼 = 

𝐸 𝑠 + 𝑇 𝑎𝑥 − 𝐶𝑜𝑠𝑡𝑠 

𝐶𝑜𝑠𝑡𝑠 
[ 𝑟𝑎𝑡𝑖𝑜 ]; (4)

 𝑠 = 𝑝𝐴 ( 𝑁 𝑡𝑐 𝑛𝑒𝑤 − 𝑁 𝑡𝑐 𝑜𝑙𝑑 ) 𝑡 [ e ] (5)
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Table 5 

Retrofit variables costs. 

Retrofit Variable Solution Cost [ €/m2] Cost [ €/unit] Funding Ratio Funding limit 

Walls Insulation 41 - 65 4500 
Floors Insulation 13.5 - 65 4500 
Roof Insulation (EPS) 13.5 - 65 4500 

Insulation (XPS) 25 - 65 4500 
Glazing PVC 260 - 85 1500 

Aluminium 380 - 85 1500 
DHW Gas boiler - 450 0 0 

Water heater - 175 0 0 
Boiler - 1750 0 0 
Air-Water heat pump - 3750 85 2500 

Climatization Gas boiler - 450 0 0 
Water heater - 175 0 0 
Boiler - 2250 85 2500 
Multi-split - 366 85 2500 

Energy source 3 solar panels - 6100 85 2500 
6 solar panels - 9400 85 2500 

Table 6 

Multi-split equipment costs and government funds for each house typology. 

Building typology Costs [ €] 

Government 

funds ratio [%] 

Government 

funds limit [ €] 

Studio 366 
1-bedroom 731 
2-bedroom 1096 
3-bedroom 1462 85 2500 
4-bedroom 1828 
5-bedroom 2193 
6-bedroom 2558 
7-bedroom 2924 
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Fig. 2. Frequency of Wall type solutions for each construction period. 

i  

t  

r  

i  

t  

m  

s  

a  

s

3

 

(  

f  

c  

E  
.3. User interface - Case study 

Initially, it is required that users fill in general information about
he building/house regarding geometry, constructive solutions, heating,
ooling, and DHW equipment ( Fig. 1 ). The features belonging to Con-
truction elements ( Table 3 ) can be estimated based on the construc-
ion period of the household. Particularly, the Wall type, Roof type, and
loor type can be respectively estimated according to Figs. 2 , 3 , 4 , and
 . With this data input, the model predicts the total, heating, and cool-
ng annual energy needs, and EPC label. Users may eventually compare
he predicted results with their billing information and original EPC, as
ell as test multiple retrofits manually. 

After this initial exploration, an option to optimize the described
PC is available by setting a maximum budget and filling in their house-
old’s tax amount. The MOO algorithm starts to iterate over the possible
etrofit scenarios according to the EPC data previously filled in by the
ser. Finally, results are illustrated in interactive bar charts for each
bjective, and a table with the optimum retrofit solutions for the maxi-
um budget is presented. This interface was tested in a case study for
 3-bedroom household in Évora, Portugal ( Fig. 6 ) with an EPC level
f ”F ” ( Fig. 7 ). This EPC was selected based on privacy concerns and
ecause 3-bedroom households are the most common entry in the full
atabase ( ≈ 45%). Most features are obtained from the house’s techni-
al drawings, while the unknown features are deduced according to its
onstruction period. Feature values for the case study are documented
n Table 7 . Finally, the obtained optimization results are presented and
iscussed. 

. Results and discussion 

This section is structured into four sub-sections: surrogate models’
erformance; MOO results; Case study results; and Discussion and Anal-
sis. The first sub-section describes the performance of each tested surro-
ate model for the described k-best features. The models’ performance
5 
s showcased by presenting their test sample’s RMSE and R 

2 for each
arget output. The MOO results sub-section displays the optimization
esults for one set of optimum retrofit options by mapping its objectives
n a Pareto optimality chart [29] . The case study sub-section illustrates
he front-end visualization and user interaction of both the surrogate
odel and optimization for the defined case study. Finally, the Discus-

ion and Analysis section interprets the results and extrapolates the key
dvantages and limitations of this work by relating it to previous re-
earch. 

.1. Surrogate models’ performance 

The results obtained show that all algorithms perform similarly
 Table 8 ). However, as the ET algorithm with 20 features tends to per-
orm slightly better, it was selected for the final interface and MOO pro-
ess. Specifically for the EPC prediction, the model developed with the
T algorithm has errors from -1 to +1 EPC level ( Table 2, Section 1.1 ).
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Table 7 

Feature values ( Table 3 ) for the proposed case study. 

Details Construction Elements Equipment Glazing 

Property Apartment Wall type By Year DHW source Electricity Window area [ 𝑚 2 ] 9 
Year 1996–2000 Wall area [ 𝑚 2 ] 56 Heating source Electricity Window type By Year 
Area [ 𝑚 2 ] 100 Roof type By Year DHW type Heater 
Height [ 𝑚 ] 3 Roof area [ 𝑚 2 ] 116 Heating type Split 
Typology 3 bedroom Floor type By year N 

◦DHW equip 1 
N 

◦floors 2 N 

◦heating equip 2 
District Évora 

Table 8 

Model training and performance indicators results. 

R [ratio] Ntc [ 𝐤𝐖𝐡 ∕ 𝐦 

𝟐 ] Nic [ 𝐤𝐖𝐡 ∕ 𝐦 

𝟐 ] Nvc [ 𝐤𝐖𝐡 ∕ 𝐦 

𝟐 ] 

k-best features Model 𝑅 2 𝑅𝑀𝑆𝐸 𝑅 2 𝑅𝑀𝑆𝐸 𝑅 2 𝑅𝑀𝑆𝐸 𝑅 2 𝑅𝑀𝑆𝐸

10 ET 0.74 0.26 0.58 55.70 0.61 19.11 0.31 5.85 
MLP 0.71 0.27 0.51 60.22 0.55 20.46 0.16 6.43 
GB 0.69 0.28 0.50 60.98 0.53 20.89 0.14 6.51 

15 ET 0.82 0.22 0.72 45.30 0.65 18.07 0.36 5.63 
MLP 0.77 0.24 0.66 49.91 0.57 20.05 0.19 6.33 
GB 0.76 0.25 0.65 51.07 0.57 20.01 0.17 6.39 

20 ET 0.84 0.21 0.79 39.77 0.67 17.70 0.41 5.41 
MLP 0.78 0.24 0.72 45.29 0.58 19.77 0.23 6.15 
GB 0.78 0.24 0.73 44.87 0.57 19.96 0.24 6.14 

25 ET 0.85 0.20 0.80 38.83 0.73 15.96 0.61 4.40 
MLP 0.80 0.23 0.74 44.33 0.67 17.66 0.47 5.11 
GB 0.80 0.23 0.75 43.19 0.68 17.22 0.33 5.75 

Fig. 3. Frequency of Roof type solutions for each construction period. 

F  

t  

s
 

c  

R  

f  

R  

0  

a  

t  

a
 

g  

s  

Fig. 4. Frequency of Floor type solutions for each construction period. 

d  

0  

v  

e  

≈  

5  

v  

o  

u  

t  

t

rom the analysis of Table 8 , it is possible to see that the 𝑅 model and
he 𝑁𝑡𝑐 model are the most accurate with an R 

2 of 0.84 and 0.79, re-
pectively. While 𝑁𝑖𝑐 and 𝑁𝑣𝑐 show R 

2 values of 0.67 and 0.41. 
The selected algorithm was subject to a k-fold cross-validation pro-

ess in which the full database was split into six training and test sets.
esults from the selected algorithm are described in Table 9 . R 

2 values
or Fold 1 and 2 are relatively lower than the remaining folds. The mean
 

2 shows a slight decrease to 0.80 while the RMSE shows an increase to
.24 when compared to the performance indicators of the selected ET
lgorithm with k-best = 20 features ( Table 8 ). Nonetheless, the valida-
ion results still show acceptable accuracy, particularly for the 𝑅 , 𝑁𝑡𝑐,
nd 𝑁𝑖𝑐 models that show R 

2 scores ≥ 0.70. 
Fig. 8 illustrates the error (in %) distribution plot of the selected al-

orithm for the prediction of the test samples (x-axis) and distribution of
amples in the test subset for each target feature (y-axis). For the 𝑅 pre-
6 
iction model, it is visible that most test values are distributed between
 and 1, and respectively, the error values of the test set predictions
ary between -25 and 25%. The 𝑁 𝑡𝑐, 𝑁 𝑖𝑐, and 𝑁 𝑣𝑐 prediction mod-
ls show most test values distributed between 0 and ≈200, ≈100, and
20 𝑘𝑊 ℎ ∕ 𝑚 

2 respectively, while most error values vary between -50 to
0%. Additionally, a trend of higher error percentages for smaller target
alues is visible, which shows that most predictions that have an error
f up to double the original value occur more frequently in smaller val-
es. This model’s behavior is seen in different scales for all models with
he 𝑅 prediction model being the least noticeable, and the 𝑁𝑖𝑐 model
he most. 
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Table 9 

Cross validation results for the selected model ET with k-best = 20. 

R [ratio] Ntc [ 𝐤𝐖𝐡 ∕ 𝐦 

𝟐 ] Nic [ 𝐤𝐖𝐡 ∕ 𝐦 

𝟐 ] Nvc [ 𝐤𝐖𝐡 ∕ 𝐦 

𝟐 ] 

𝑅 2 𝑅𝑀𝑆𝐸 𝑅 2 𝑅𝑀𝑆𝐸 𝑅 2 𝑅𝑀𝑆𝐸 𝑅 2 𝑅𝑀𝑆𝐸

Fold 1 0.61 0.24 0.63 49.46 0.55 21.27 0.34 7.26 
Fold 2 0.79 0.28 0.76 50.83 0.67 21.43 0.50 6.99 
Fold 3 0.86 0.25 0.79 54.54 0.70 22.27 0.46 6.00 
Fold 4 0.87 0.24 0.84 51.21 0.78 20.87 0.51 5.86 
Fold 5 0.85 0.22 0.81 45.52 0.75 18.32 0.43 5.33 
Fold 6 0.83 0.22 0.80 44.24 0.75 19.20 0.45 5.10 
Mean 0.80 0.24 0.77 49.37 0.70 20.48 0.45 6.07 

Fig. 5. Frequency of Window type solutions for each construction period. 

Fig. 6. Case study 3D model. 
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.2. Multi-Objective optimization results 

The optimization process was tested with the sample house described
n Table 7 ( Section 2.3 ) with an 𝑁𝑡𝑐 value of ≈ 22,500 𝑘𝑊 ℎ , a classi-
cation label of ǣE ǥ, and no maximum budget. The results of the op-
imization process are described in a 3-dimensional Pareto optimality
catter chart represented in Fig. 9 . The 𝑅 ratio was added as a color
cale of the optimal solutions to illustrate the relationships between ob-
ectives and their respective 𝑅 . This chart illustrates the optimum so-
utions found by the algorithm, which are the non-dominated solutions
7 
refer to Section 1.1 [29] ). This chart is only presented here and is not
ncluded in the interface because this type of visual communication may
e considered difficult to interpret by non-expert citizens. 

Optimization results show a wide range of optimum solutions for all
bjectives. The objectives can vary between ≈11000 € and ≈450 € for
he total retrofit costs, ≈6000 𝑘𝑊 ℎ and ≈17000 𝑘𝑊 ℎ for the 𝑁𝑡𝑐, and
0.5 and 7 for the 𝑅𝑂𝐼 in 3 years(i.e., return in 3 years of 0.5 to 7 times

he investment made). This demonstrates that the best of each objective
oes not necessarily represent the best solution. In the case of this EPC, it
s visible in Fig. 9 that the most expensive optimum solutions represent
inimum 𝑁𝑡𝑐 and 𝑅 values. However, solutions that have the highest
𝑂𝐼 in 3 years correspond to the cheapest solutions with smaller 𝑅 that
ave a more immediate impact on energy savings and tax benefits, when
ompared with the original features of the EPC. Finally, it is up to the
ser to choose the adequate 𝑅𝑂𝐼 rate, how much should be spent on the
etrofit, and if it is possible to plan long-term retrofit strategies based
n returns and savings obtained from cheaper retrofits. 

.3. Case study interface results 

The interface initiates by loading the developed surrogate models.
fter loading the models, drop-down and input boxes appear and al-

ow the user to fill in basic general data regarding their home or build-
ng. The inputs for the proposed case study are filled in according to
able 7 ( Section 2.3 ), with 16 mandatory features, and 4 optional, that
an be extrapolated based on the construction period in the case of the
nformation not being readily available (Wall, Roof, Floor, and Window
ypes in Table 3 ). However, if the users can obtain the required details
here is a possibility to fill in and change the default extrapolated values
nd increase the predictions’ accuracy. 
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Fig. 8. Test set values (y-axis) and error (x-axis) distribution joint plot for each regression Extra Trees model. 

Table 10 

Case study predicted and original results. 

Nic [ 𝐤𝐖𝐡 ∕ 𝐦 

𝟐 ] Nvc [ 𝐤𝐖𝐡 ∕ 𝐦 

𝟐 ] Ntc [ 𝐤𝐖𝐡 ∕ 𝐦 

𝟐 ] R [ratio] EPC class 

Original 114.31 37.10 202.20 2.56 F 
Predicted 102.92 40.99 225.05 2.10 E 
error[%] -10.49 9.96 10.69 -19.74 
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After filling in the required data the user can simulate their energy
eeds 𝑁 𝑖𝑐, 𝑁 𝑣𝑐, and 𝑁 𝑡𝑐 values, and EPC ( Fig. 10 ). The energy needs
re presented in total 𝑘𝑊 ℎ rather than 𝑘𝑊 ℎ ∕ 𝑚 

2 for a better under-
tanding and comparison with energy bills. Afterward, it is possible to
anually change the inputs and perform analyses of retrofit impacts or

eep scrolling to read the information regarding eventual government
unds to support building retrofits, and tax benefits obtained from the
PC improvement. 
8 
The predicted results are compared with the original EPC for this
ouse in Table 10 . As seen, the predicted annual energy needs for heat-
ng ( 𝑁𝑖𝑐), cooling ( 𝑁𝑣𝑐), and total ( 𝑁𝑡𝑐) have an error of ≈ 14 𝑘𝑊 ℎ ∕ 𝑚 

2 ,
3 𝑘𝑊 ℎ ∕ 𝑚 

2 , and ≈ 23 𝑘𝑊 ℎ ∕ 𝑚 

2 respectively. Additionally, the model
ails to predict the original EPC by one level. These errors are within the
ocumented errors for the selected surrogate model in Table 8 . 

After this initial analysis, the user is prompted to click a button that
erforms an optimization process to find optimum retrofit solutions with
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Fig. 9. Pareto optimality chart with a color 
scale of resulting retrofit R ratio. 

Fig. 10. Filler form for input features (left) and model predictions for EPC label (right). 

9 
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Fig. 11. Interactive charts for each objective: total energy needs (left). 𝑅𝑂𝐼 in 3 years (middle), Retrofit cost (right). Table with optimum solutions values (Top). 

Table 11 

Example of the table with optimization results that can be downloaded by the user according to the specified budget limit. 

Retrofit Walls Roof Glazing DHW DHW 

energy 

source 

HVAC HVAC 

energy 

source 

Ntc 

[kWh] 

ROI 

[ratio] 

Retrofit 

cost [ €] 

New EPC 

label 

1 - EPS - - - - - 15473 7.32 548 C 
2 - EPS - Heater Gas - - 13315 4.75 998 C 
3 ETICS EPS PVC - - - - 9608 3.03 2088 B 
4 - EPS PVC - - - - 12536 3.87 1284 C 
5 - EPS PVC Heater Gas - - 11823 2.88 1734 C 
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 specific budget to be defined. In this case study, a maximum budget of
000 € was selected, different from the optimization process performed
bove in sub- Section 3.2 , which had no limit budget. The interface runs
he optimization algorithm and provides the user with a table with the
btained optimum solutions that fit the specified budget. The user can
nteractively explore three bar charts that illustrate these solutions’ ob-
ectives’ values ( Fig. 11 ). The bar charts were chosen as a more user-
riendly option than the Pareto optimality chart to understand the re-
ults. 

Results for this case study optimization show 5 non-dominated so-
utions that fit the specified budget ( Table 11 ). Particularly, the algo-
ithm suggested a retrofit of the roof, which currently has no insulation,
ollowed by insulation of the exterior walls, which makes the retrofit
loser to the budget limit. Cheaper variations of this solution are pro-
ided, such as changing from an electric water heater to a gas heater.
he presented solutions can yield decreases in the 𝑁𝑡𝑐 by up to ≈ 60%,
nd 𝑅𝑂𝐼 values ranging from ≈ 2 to ≈ 7. 

.4. Discussion and analysis 

The results obtained in this work show R 

2 scores of 0.84 and 0.79
nd RMSE of 0.21 and 39.77 𝑘𝑊 ℎ ∕ 𝑚 

2 for the EPC (R ratio) and energy
eeds (Ntc) predictions respectively. These results are adequate for the
urpose of integrating surrogate models and MOO into an easy-to-use
eb application that promotes the engagement of citizens and stake-
olders in the building retrofit and EPC scheme. The validation results
how slightly lower accuracy than the one seen in Burratti et al. [25] and
hayatian et al. [26] models. This may be explained by the databases
sed in these studies which may have different features and data. To
mprove the obtained accuracy in this study, new data cleaning meth-
ds can be used to improve additional features and feature engineering
rocesses can be applied to develop additional features that might be
issing from the original database. 

The integration of the MOO process helped tackle conflicting objec-
ives that have a significant weight in a citizen’s decision about the re-
abilitation of their household or building. For this case study EPC, the
OO process returned 5 optimum retrofit solutions capable of reducing

nergy savings up to 60% while minimizing the cost of the retrofit. How-
ver, optimization results should improve with the testing of multiple
OO algorithms, as well as with the tuning of each algorithm’s hyperpa-

ameters. Additionally, an optimization process that explores different
10 
bjectives and metrics may be helpful in the communication of results
o the user. 

Finally, the web app interface may improve with different communi-
ation strategies of both the input data, model exploration, and optimum
etrofit solutions: (1) segmenting input and data forms into different
ections; (2) assigning icons to inputs and features; (3) other interactive
xperiences such as interactive tables and/or charts. Furthermore, the
eb application would benefit from users’ feedback, collaborative de-

ign, and integration of other EU countries’ EPC databases. This would
ncrease the scope and usability of the app to a larger scale. 

. Conclusions 

This work integrates Machine Learning models and Multi-Objective
ptimization into an interface in a web application format. This inter-

ace aims to engage citizens in the building retrofit process by promptly
uggesting optimum retrofits for user-specific scenarios. In this sense,
ifferent regression algorithms were tested, and the best-performing
nes were selected to predict energy needs and EPC labels with sig-
ificantly fewer features than the ones required for the official certi-
cation process and for any building performance simulation or opti-
ization. Additionally, this work provides researchers with alternative

pproaches to tackle energy-related problems, which are computation-
lly inexpensive and have easy-to-grasp inputs. 

The final models required 16 mandatory and 4 optional features to
erform the predictions with a coefficient of determination of 0.84 and
.79 for the EPC label and total energy needs predictions. Afterward,
he optimization process considers all the retrofits that are funded by
overnment programs and the user’s maximum budget to find the best
ombinations of retrofit solutions that yield minimum energy needs and
osts and maximum return on investment. Results have shown improve-
ents of up to 60% decrease in energy needs and return on investments

n 3 years of up to 7 for an EPC case study. Optimization results can then
e consulted in the developed app as interactive tables and charts ac-
ording to objectives and retrofit solutions. However, some limitations
f this study lie in the accuracy of the surrogate model, the efficiency
f the Multi-Objective Optimization results, and the interface data and
esults communication to the user. 

In the future, multiple feature engineering techniques may improve
he quality of the database and enhance the surrogate models’ accuracy;
ultiple optimization algorithms can be fine-tuned and compared to ob-

ain the best optimization results; and new objectives and data commu-
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ication techniques can be explored to further improve user experience.
his work has the further advantage of allowing the replication of this
pproach to other national or municipal EPC databases. By applying the
resented methodology, other countries or regions can develop better
ays to provide citizens with valuable, accurate, and comprehensible

nformation to enhance households’ comfort and energy savings accord-
ng to their investment budgets. 
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