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A B S T R A C T

Glazings systems are responsible for significant building gains and losses regarding energy and thermal loads.
Thus, current research has converged on finding glazing solutions that minimize heating, cooling, and lighting
needs. One example of innovative glazing systems is thermochromic glazings. These glazings change their
optical and thermal properties according to their surface temperatures by darkening at higher temperatures
and consequently decreasing visible and solar transmittance. These property transitions have an impact not
only on the heating and cooling needs of a building but also on the electric lighting needs. This research aims
to study the impact that different switching temperature ranges and thermochromic coating transmittance
values have on the energy use of an office room in different climates. This is accomplished with the annual
energy simulation for heating, cooling, and electric lighting energy use of an office with a thermochromic
glazing system in two different climates. A multi-objective optimization process is integrated to minimize the
office’s thermal, lighting, and total energy use according to the thermochromic glazing transition temperatures
and transmittances. Optimization results show highly conflicting values between the office room’s electric
lighting and climatization energy use, showing that electric lighting energy use can increase up to 200% with
low transition temperatures. Additionally, optimum solutions show improvements of 15% in total energy use
against one off-the-market thermochromic glazing.
1. Introduction

Buildings account for 40% of energy consumption in Europe (Euro-
pean Commission, 2021), and urban population is estimated to grow at
an alarming rate from 55.3%, in 2018, to 60% by 2030 (United Nations,
2018). To reduce energy consumption, research has been converging
towards the reduction of building energy consumption and achieving
Net-Zero buildings (Nations, 2020). Window glazing allows the trans-
mission of natural light into the building interior, which has a positive
effect on energy consumption by lowering the electric lighting needs.
However, glazing is responsible for significant heat exchanges that can
harm the building’s thermal performance (Ye et al., 2012). Thus, it is
no surprise that researchers have been studying methods to improve
the performance and adaptation of the building glazing systems. Smart
glazing technologies have been showing promising results in increasing
thermal comfort and reducing building energy consumption (Cuce and
Riffat, 2015; Rezaei et al., 2017). Particularly, Thermochromic Glazing
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(TCG) is a smart passive glazing solution that incorporates a coating
of a thermochromic material in the glazing system that changes its
thermal and optical properties according to its surface temperature.
This is achieved through a thin-layered coating placed between two
glass panes (Rezaei et al., 2017).

Vanadium Oxide (VO2) is generally the chosen material to produce
TCG coatings because when it reaches a critical transition temperature
(𝑇𝑐), the material transitions from semi-conductor to metal according
to a hysteresis process (Lee, 2002). Alas, VO2 has a high 𝑇𝑐 of 68 ◦C,
which is significantly higher than typical room temperatures. To solve
this issue, manufacturers can dope the thermochromic coating with
other constituents to alter the coating’s 𝑇𝑐 and glass solar and visible
transmittance (𝜏𝑠𝑜𝑙 and 𝜏𝑣𝑖𝑠) values to obtain suitable TCG properties
that provide energy consumption benefits (Cuce and Riffat, 2015; Lee,
2002; Rezaei et al., 2017; Saeli et al., 2010). However, cold climates
still struggle to provide the TCG chromic coating with the required
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Fig. 1. Proposed research workflow.

temperature to transition. Therefore, TCG systems are reported to
present smaller improvements against traditional glazing systems in a
cold climate than a TCG system in warmer climates (Aburas et al., 2019;
Liang et al., 2015; Saeli et al., 2010; Tällberg et al., 2019; Teixeira
et al., 2022). Because of this climatic amplitude, TCG systems require
different properties to yield the best performances. Other studies have
focused on the effect that TCG T𝑐 , 𝜏𝑠𝑜𝑙 and 𝜏𝑣𝑖𝑠, and hysteresis loops
have on building energy needs (Giovannini et al., 2019; Lee, 2002;
Saeli et al., 2010; Warwick et al., 2014, 2015; Ye et al., 2012). Results
show that a quick transition, meaning narrow and steep switching
temperature ranges, and lower 𝑇𝑐 generally represent bigger energy
savings.

Most studies pointing out energy savings with TCG account for
climatization and electric lighting energy needs but report a decrease
in the former with an increase in the latter. This means that despite the
thermal benefits provided by the TCG, its use harms daylighting perfor-
mance (Liang et al., 2015; Teixeira et al., 2022). Thus, lower transition
temperatures that allow the glass to switch to darker states, can even-
tually offset the improvements obtained in climatization energy needs
with increasing electric lighting energy needs. This trade-off means
that when manufacturing and applying TCG, one must consider ideal
𝑇𝑐 , 𝜏𝑠𝑜𝑙, and 𝜏𝑣𝑖𝑠 values that improve thermal performance, without
critically harming lighting performance for a specific climate. However,
to our knowledge, not much has been done to understand these implicit
trade-offs in different climates and in a building’s energy consumption.
Finding the best TCG properties that provide the least energy consump-
tion for both electric lighting energy needs and climatization needs can
be treated as a Multi-Objective Optimization (MOO) problem.

MOO is an optimization process typically employed in the Ar-
chitecture, Engineering, and Construction (AEC) industry due to the
inherent conflicting objectives of buildings’ performance (Araújo et al.,
2021; Nguyen et al., 2014; Pereira et al., 2020, 2019; Waibel et al.,
2019; Wortmann et al., 2015). Additionally, most objectives in building
performance optimizations are outputs from simulation tool functions
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that perform extensive mathematical calculations (Nguyen et al., 2014;
Wortmann et al., 2015). Thus, these time-consuming functions are
usually approached as derivative-free optimization problems with a
class of algorithms known as metaheuristics (Nguyen et al., 2014;
Pereira et al., 2020; Waibel et al., 2019). According to the ‘‘No-Free-
Lunch’’ theorem for optimization, there is not a single algorithm that
outperforms all others in all problems (Wolpert and Macready, 1997).
Thus, one must try multiple algorithms to explore a wider solution
space (Wortmann et al., 2015; Nguyen et al., 2014).

Pereira et al. (2019) apply a MOO approach to optimize the cost and
Useful Daylight Illuminance (UDI) of an exhibition space by performing
three optimization runs of 200 iterations each. Araújo et al. (2021)
performs a three-objective MOO process to minimize an urban area’s
rehabilitation cost, and maximize its thermal, and daylighting perfor-
mance. Both studies obtain significant improvements with the MOO
process but highlight the need to perform more iterations to explore a
wider solution space and guarantee optimal solutions. However, doing
so would require more computational power and time. Pereira and
Leitão (2020) later addresses this issue by applying computational
parallelization techniques and manage to optimize a building’s struc-
tural element 6 times faster. Alas, results and computation time are
still considered below expectations by the authors. Another approach
to speed up simulation results is the integration of surrogate models
that approximate simulation results (Thrampoulidis et al., 2021). With
this approach, Araujo et al. (2022) couple Machine Learning surrogate
models that approximate the objective functions to optimize a building
block rehabilitation that minimizes its cost, total annual energy needs
of the building block, and standard deviation among buildings. Results
document a significant decrease in the optimization time from ≈ 68000
to ≈ 800 s.

This research integrates a surrogate model with a MOO process
of a TCG in an office room and compares it with an off-the-market
TCG system in two different climates. The objectives of this MOO
process are to minimize the office’s heating, cooling, and electric
lighting energy needs. This process will help quantifying the existing
conflicts between different end-uses (electric lighting and climatiza-
tion) of an office’s energy needs regarding different TCG properties
such as 𝑇𝑐 , the switching temperature range of 𝜏𝑠𝑜𝑙 and 𝜏𝑣𝑖𝑠, as well
as their range of values. The first step is to create a surrogate model
of the objectives (to reduce the computational cost of simulations) by
integrating an automated baseline optimization process with multiple
metaheuristics and low number of iterations. This is done with the
validated simulation software EnergyPlus (Drury et al., 2000) and a
Python environment (Araujo et al., 2022). Finally, the surrogate model
is integrated with the best performing metaheuristic for 5000 iterations
to obtain the TCG optimum values.

The innovation of this study lies in the optimization of theoretical
properties of a TCG for multiple-objectives and in the integration of
a surrogate model that speeds up the whole process. Consequently,
this work can guide TCG manufacturers into achieving the best per-
formance for local climates, by altering the TCG’s properties. Which in
turn, contributes to the achievement of the United Nations Sustainable
Development Goals (SDG) 11 ‘‘Sustainable Cities and Communities’’
and 13 ‘‘Climate Action’’, since it can help mitigate energy poverty and
decarbonize the building sector, contributing to more sustainable cities
and the mitigation of climate change.

2. Methodology

This research can be sub-divided into 4 sub-sections: (1) Case-Study,
(2) baseline optimization, (3) surrogate model creation, and (4) final
optimization (Fig. 1).

1. The case study section presents the studied office room and the
different climates considered for this study. An initial analysis
of a standard TCG with EnergyPlus is performed. In this sub-
section, the TCG properties, simulation inputs, and outputs for
our case study are also presented.



Solar Energy 249 (2023) 446–456G.R. Araújo et al.

a
(
t
s
i
a
d

2
I
I
s
o
o
h
c
w
f
p
i

2

d
a
o
h
i

𝜏
T
p

[

a
o
c
o
a
S
a
a
2
e
s

Table 1
Thermochromic glazing properties simulated for each temperature state (Teixeira et al.,
2022).
T [◦C] 5 15 25 45 65 85

𝑈 [W∕(m2K)] 1.6

𝜏𝑣𝑖𝑠 0.72 0.69 0.63 0.36 0.11 0.02
𝜌𝑣𝑖𝑠𝐹 0.07 0.07 0.06 0.05 0.04 0.04
𝜌𝑣𝑖𝑠𝐵 0.07 0.07 0.06 0.05 0.04 0.04
𝜏𝑠𝑜𝑙 0.69 0.67 0.64 0.50 0.34 0.26
𝜌𝑠𝑜𝑙𝐹 0.06 0.06 0.06 0.05 0.05 0.05
𝜌𝑠𝑜𝑙𝐵 0.06 0.06 0.06 0.05 0.05 0.05

2. The baseline optimization section describes the optimization
problem objectives and decision variables. Afterward, this op-
timization problem is integrated with multiple metaheuristics to
perform simulation-based iterations which are then used to build
the surrogate model.

3. The surrogate model section describes the training dataset, ma-
chine learning model used, and accuracy scores.

4. In the final optimization section, the results obtained with the
final optimization with the surrogate model are presented and
discussed.

2.1. Case study description and simulation settings

This work is based on previous research (Teixeira et al., 2022) and
considers a pre-calibrated building energy simulation model of an office
room facing southeast in Copenhagen, Denmark, and the same room
in Lisbon, Portugal. Denmark is characterized by a cold climate, and
Portugal by a warm Mediterranean climate (Fig. 2) (Peel et al., 2007).
The office has roughly 20 m2 of floor area and 10 m2 of window
rea. The window is composed of a TCG assembly (12 mm), air gap
12 mm), and a Low-E coated glass (6 mm) (Fig. 3). Table 1 describes
he TCG solar-optical and thermal properties at different stages of
urface temperatures. It is visible that significant changes occur mostly
n the 𝜏𝑠𝑜𝑙 and 𝜏𝑣𝑖𝑠 values, ranging from 0.69 to 0.26 and 0.72 to 0.02
t 5 ◦C and 85 ◦C, respectively. It is visible that 𝜏𝑣𝑖𝑠 shows a higher
ecrease than 𝜏𝑠𝑜𝑙 with the thermochromic transition.

For the simulation and analysis process, EnergyPlus (Drury et al.,
000) was coupled with Eppy (Philip, 2019), a scripting language for
DF files in Python. Eppy allows the automation of specific changes in
DF fields and objects, runs IDF files, and processes results. An initial
imulation was performed with the standard TCG system to obtain the
ffice’s total cooling, heating, and lighting electricity rate (W). The
ffice room was modeled with an occupation of one person during work
ours and weekdays. Additionally, the electric equipment considered
omprises laptop and desktop units. The zone sensors for Energyplus
ere located at a desk position for the period of one year, both

or thermal and lighting outputs. The electric lighting control, HVAC
arameters, and remaining simulation inputs are described accordingly
n Table 2.

.2. Baseline optimization

The goal of the present research is to understand and report how
ifferent TCG coating properties impact an office room’s climatization
nd electric lighting energy needs. Thus, the main aim to find the the-
retical TCG properties that provide the case study’s yearly minimum
eating, cooling, and electric lighting energy use (f1 in Eq. (1) and f2
n Eq. (2)).

For the decision variables, a function that approximates 𝜏𝑠𝑜𝑙 and
𝑣𝑖𝑠 values for different TCG surface temperatures is modeled (Eq. (3)).
his is described according to the initial (𝑇𝑚𝑖𝑛) and final (𝑇𝑚𝑎𝑥) tem-
eratures of transition, and the respective minimum and maximum 𝜏𝑠𝑜𝑙

that the TCG system can reach. This describes a linear transmittance
448

i

Table 2
Simulation inputs and outputs.

Values

Occupation 1 person weekdays from 9 to 6

Air changes/hour 1.0 h−1

Electric equipment Desktop (155 W): from 9 to 6
Laptop (30 W): from 9 to 6

Artificial lighting Available during occupation (110 W)

Lighting control Set-point of 500 lux

HVAC set-points During occupation: 20–24 ◦C

SCOP/SEER 4.43/7.98

Simulation period 30 timesteps per hour, 1 year period

Outputs Total Cooling Rate [W], Total Heating Rate
[W], Electric Lighting Rate [W]

variation during the thermochromic phasing (Warwick et al., 2014).
Additionally, it comprises a static behavior when the glazing surface
is below or over the temperature thresholds for each state. With this
function (Eq. (3)), it is possible to approximate multiple variations of
TCG systems with different properties.

For the simulation process, the temperatures 5, 15, 25, 45, 65,
and 85 ◦C were considered for the TCG optical data establishment.
Thus, for the optimization process, Eq. (3) was applied to calculate the
approximated 𝜏𝑠𝑜𝑙 and 𝜏𝑣𝑖𝑠 at the given temperatures. To accomplish
this, the decision variables are 𝑇𝑚𝑖𝑛, 𝑇𝑚𝑎𝑥, 𝜏𝑠𝑜𝑙𝑚𝑎𝑥, and 𝜏𝑠𝑜𝑙𝑚𝑖𝑛, and they
can vary from 0 to 95 ◦C for 𝑇𝑚𝑖𝑛 and 𝑇𝑚𝑎𝑥, and 0.1 to 0.9 for 𝜏𝑠𝑜𝑙𝑚𝑖𝑛
and 𝜏𝑠𝑜𝑙𝑚𝑎𝑥. For the 𝜏𝑣𝑖𝑠 values, the same equation (Eq. (3)) was used
by replacing 𝜏𝑠𝑜𝑙𝑚𝑖𝑛 and 𝜏𝑠𝑜𝑙𝑚𝑎𝑥 for 𝜏𝑣𝑖𝑠𝑚𝑖𝑛 and 𝜏𝑣𝑖𝑠𝑚𝑎𝑥, but with 𝜏𝑣𝑖𝑠𝑚𝑖𝑛 =
0 at all conditions.

Finally, the considered optimization constraints assure that 𝑇𝑚𝑖𝑛 is
not larger than 𝑇𝑚𝑎𝑥, and 𝜏𝑠𝑜𝑙𝑚𝑖𝑛 than 𝜏𝑠𝑜𝑙𝑚𝑎𝑥. Fig. 4 illustrates Eq. (3)
variables and compares the previously simulated TCG transmittance
values in Table 1 and approximated TCG transmittance values. More-
over, it describes the transition temperature (𝑇𝑐) and transmittance
variation (𝛥𝜏𝑠𝑜𝑙) in a TCG system. Results for this approximated TCG
show errors of ≈ 0.05 kWh/m2 and ≈ 0 kWh/m2, for heating and
cooling and electric lighting energy use in Copenhagen’s office room;
and ≈ 0.05 kWh/m2 and ≈ 0.1 kWh/m2 for Lisbon’s, which shows
minimum errors with the approximated values.

𝑓1
(

𝑇𝑚𝑖𝑛, 𝑇𝑚𝑎𝑥, 𝜏𝑠𝑜𝑙𝑚𝑎𝑥, 𝜏𝑠𝑜𝑙𝑚𝑖𝑛
)

= 𝐻𝑉 𝐴𝐶 kWh∕m2 (1)

𝑓2
(

𝑇𝑚𝑖𝑛, 𝑇𝑚𝑎𝑥, 𝜏𝑠𝑜𝑙𝑚𝑎𝑥, 𝜏𝑠𝑜𝑙𝑚𝑖𝑛
)

= 𝐿𝑖𝑔ℎ𝑡𝑖𝑛𝑔 kWh∕m2 (2)

𝜏𝑠𝑜𝑙
(

𝑇 , 𝑇𝑚𝑖𝑛, 𝑇𝑚𝑎𝑥, 𝜏𝑠𝑜𝑙𝑚𝑎𝑥, 𝜏𝑠𝑜𝑙𝑚𝑖𝑛
)

=

=

⎧

⎪

⎨

⎪

⎩

𝜏𝑠𝑜𝑙𝑚𝑎𝑥 if 𝑇 ≤ 𝑇𝑚𝑖𝑛
𝜏𝑠𝑜𝑙𝑚𝑎𝑥 −

𝜏𝑠𝑜𝑙𝑚𝑎𝑥−𝜏𝑠𝑜𝑙𝑚𝑖𝑛
(𝑇𝑚𝑎𝑥−𝑇𝑚𝑖𝑛)

×
(

𝑇 − 𝑇𝑚𝑖𝑛
)

if 𝑇𝑚𝑖𝑛 < 𝑇 < 𝑇𝑚𝑎𝑥
𝜏𝑠𝑜𝑙𝑚𝑖𝑛 if 𝑇 ≥ 𝑇𝑚𝑎𝑥

(3)

𝑇 ∈ {5, 15, 25, 45, 65, 85}, 𝑇𝑚𝑖𝑛 ∈ [0, 95], 𝑇𝑚𝑎𝑥 ∈ [0, 95], 𝜏𝑚𝑎𝑥 ∈
0.1, 0.9], 𝜏𝑚𝑖𝑛 ∈ [0.1, 0.9]

Since each EnergyPlus TCG simulation takes roughly 20 s, to explore
vast solution space within these variables and constraints thousands

f simulations would have to be ran, which would render the pro-
ess highly time-consuming, or even unfeasible. As such, a baseline
ptimization of 500 iterations was performed with 4 metaheuristics
lgorithms, two from the evolutionary class of algorithms (Bäck and
chwefel, 1993), and two from the particle swarm class (Kennedy
nd Eberhart, 1995). Particularly, the NSGAII, NSGAIII, OMOPSO,
nd SMPSO (Deb and Jain, 2014; Godínez et al., 2010; Nebro et al.,
009) algorithms were applied to the studied optimization problem. To
valuate the optimization performance the algorithms’ non-dominated
olutions are calculated, which are solutions that cannot improve more
n one objective, without harming the other (Censor, 1977).
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Fig. 2. Top — Denmark (top) and Lisbon (bottom) yearly dry bulb temperature. Bottom — 3D model of the office room used as a case study.
After a total of 2000 iterations, the results and variables were com-
piled into a database to train a Supervised Learning algorithm (Caruana
and Niculescu-Mizil, 2006) capable of building an accurate surrogate
model (Araujo et al., 2022; Bamdad et al., 2020; Thrampoulidis et al.,
2021; Wortmann et al., 2015) to predict the results for the given
variables significantly faster than a simulation. Thus, with the surro-
gate model, thousands of iterations can be performed, and optimal
results obtained at an incomparably lower computational cost than with
Energyplus.

2.3. Surrogate model

For the surrogate model of the objective functions, machine learning
techniques were adopted to approximate 𝑓1 and 𝑓2 values (Eqs. (1)
and (2)), which are described as regression problems. Particularly,
the supervised learning algorithm Extra Trees Regressor (Caruana and
Niculescu-Mizil, 2006; Mendes-Moreira et al., 2012) was used with
the SciKit-Learn package for python (Pedregosa et al., 2019) with an
off-the-shelf computer desktop unit. A total of 2000 iterations were
performed with the different metaheuristics, each with 500 iterations
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in which the tested solution variables are described in Section 2.2,
Eq. (3). The results are merged into a database, and split into a training
and test set respectively with 70% and 30% of the 2000 total samples.
To evaluate the surrogate model accuracy the test set’s coefficient of
determination (R2 score), Root Mean Squared Error (RMSE), and the
elapsed time to predict the test set were documented. Finally, the error
distribution between predicted and simulated results of the test sample
is plotted to understand the confidence of predictions for both climates.

Table 3 shows similar results for both climates regarding the sur-
rogate model accuracy. However, RMSE results show slight deviance
for both climates. It can be observed that heating and cooling energy
use has a RMSE of 0.19 and 0.05 kWh/m2 for Lisbon and Copenhagen
respectively, while electric lighting energy use has a RMSE of 0.28 and
0.16 kWh/m2. This can be explained by the poorest performance of
TCG systems in cold climates mentioned in Sections 1 and 2.1. Since
TCG systems have less impact in cold climates, the values of 𝑓1 and 𝑓2
have smaller amplitudes. Thus, with similar performance levels, RMSE
values will be smaller for the cold climate. Finally, it is possible to state
that the regression accuracy is outstanding and the accuracy loss with
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Fig. 3. Thermochromic glazing layers.

Table 3
Regression model scores for both climates.

Lisbon Copenhagen

Objective f1 f2 f1 f2

r2 score 0.99 0.98 0.98 0.99
RMSE [kWh/m2] 0.19 0.28 0.05 0.16
Elapsed time 0.2 0.2 0.2 0.2

the surrogate model predictions combined with the recorded regression
times significantly outperforms the simulation approach.

From the error distribution plot illustrated in Fig. 5, it is visible
that the regression model for Copenhagen’s climate had significantly
smaller errors than Lisbon’s climate, where errors were between −1 and
1 kWh/m2. However, all models have shown acceptable accuracy with
at least more than 150 instances predicted with an error of ≈ 0. We can
now perform thousands of iterations without the need to perform any
simulation, with minimum errors.

3. Results

Simulation results for the original TCG show hourly heating and
cooling rates, and the different climatization (heating and cooling)
energy use for these different climates are illustrated in Fig. 6. This
energy use is calculated by considering the office’s equipment energy
needs affected by the SCOP/SEER of 4.43/7.98 respectively, as de-
scribed in Teixeira et al. (2022). The Copenhagen’s office hourly rates
of heating and cooling hit maximums of 500 W, particularly during
winter. Whereas in Lisbon hourly rates for heating and cooling reach
maximums of 300 W during summer. Additionally, electric lighting
rates for Copenhagen are superior than for Lisbon. Finally, the office
room in Copenhagen requires a yearly total of 14.45 kWh/m2 for
heating and cooling, 3.90 kWh/m2 for electric lighting, and a total of
18.40 kWh/m2. Whereas Lisbon respectively requires 9.70 kWh/m2, 3
kWh/m2, and a total of 12.7 kWh/m2.

For the final optimization, the proposed surrogate model was in-
tegrated with the optimization problem defined in Section 2.2. The
optimization objectives were to minimize both electric lighting energy
use and heating and cooling energy use. To do that, 10000 iterations
of different TCG properties were performed with the NSGAII algorithm
for each climate.
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Fig. 7 shows the plot with all the tested solutions according to the
results of each objective on the 𝑥-axis (electric lighting energy use)
and 𝑦-axis (heating and cooling energy use), and the sum of the two
objectives (total energy use) on the 𝑧-axis. By looking at the graphs
of both climates, a clear conflict among objectives for different TCG
properties is visible. It is noticed that minimum heating and cooling
energy use both in Lisbon and Copenhagen’s climate correspond to
maximum electric lighting energy use values. Therefore, it is possible
to conclude that modeling TCG production for a single objective, such
as heating and cooling energy use, does not necessarily represent the
optimal TCG solution that will save the most energy. Furthermore, it is
visible that the absolute minimum value for the total energy use of the
office room is represented by a balanced performance regarding ther-
mal and lighting energy use. When comparing both climates’ results,
it was noticeable that there is a higher amplitude of total energy use
values for the Lisbon climate than for Copenhagen’s ranging between
from 11 to 16 kWh/m2 and 17 to 18 kWh/m2 respectively.

From these results, the TCG solutions that yielded the minimum
values for 𝑓1, 𝑓2, and their sum were selected and compared with the
original TCG system (Fig. 8). It is visible that Copenhagen’s climate
TCG optimization yielded almost no significant results when compared
to the original TCG system, with improvements of ≈ 7% of the total
energy use for the TCG with minimum 𝑓1 + 𝑓2, 𝑓1, and 𝑓2. Results are
noticeably different for the Lisbon climate, since the TCG optimization
shows more sensitivity to the optimization goals. For the minimum
𝑓1 + 𝑓2, the optimum TCG solution obtained improvements of ≈ 15%
against the original system with 10 kWh/m2. Moreover, the highest
total energy use is represented by the TCG optimized for 𝑓1 which
causes a significant increase of 200% (from 3 to 9 kWh/m2) in the
electric lighting energy use of the office. Finally, the optimum TCG for
minimum 𝑓2 yields a total energy use of 13.9 kWh/m2 from which ≈
90% was for heating and cooling.

To better understand the TCG properties variation for these ob-
jectives results, the Pareto front with non-dominated solutions was
illustrated according to their 𝑇𝑐 in a heatmap from 0 to 80 ◦C, and ac-
cording to their 𝛥𝜏𝑠𝑜𝑙 illustrated in the size of the plot markers (Fig. 9).
This figure shows that for the cold climate of Copenhagen, lower 𝑇𝑐
values provide smaller thermal energy use, while higher 𝑇𝑐 values
represent minimum lighting energy use since the TCG is switching to a
darker reflective state at higher temperatures. Additionally, minimum
total energy consumption occurs for TCG systems with small 𝑇𝑐 values
but not the smallest. Finally, it can be noticed that all optimal TCG
systems for Copenhagen have high 𝛥𝜏𝑠𝑜𝑙.

For the climate of Lisbon, more results are worth emphasizing. Not
only do the total energy consumption values have higher amplitude,
but also the inherent trade-offs between thermal and lighting energy
use according to different TCG glazing systems are significantly more
visible. Particularly, it is visible that higher 𝑇𝑐 and 𝛥𝜏𝑠𝑜𝑙 values for
TCG solutions provide minimum lighting energy use but maximum
thermal energy use, while lower 𝑇𝑐 and 𝛥𝜏𝑠𝑜𝑙 values provide minimum
thermal energy use but maximum lighting energy use. As seen, both
these heuristics do not represent minimum total energy consumption.
For Lisbon’s case, it is observed that minimum total energy use is
represented by TCG solutions with balanced values for both 𝑇𝑐 and
𝛥𝜏𝑠𝑜𝑙.

To take an individual look at some TCG optimal solutions, a TCG
solution with the minimum heating and cooling energy use, electric
lighting energy use, and total energy consumption for both climates
were selected and plotted for their respective 𝜏𝑠𝑜𝑙 and 𝜏𝑣𝑖𝑠 according to
their surface temperature (Fig. 10). Fig. 10A, B, and C illustrate the
three optimal TCG solutions for the climate of Copenhagen, and D,
E, and F for the climate of Lisbon. Fig. 10D shows the TCG solution
that provides the office room in Lisbon’s climate with the minimum
heating and cooling energy use. It is visible that both the TCG 𝜏𝑠𝑜𝑙 and
𝜏𝑣𝑖𝑠 have extremely low values at all temperatures. This indicates that

the TCG would provide the minimum thermal energy use, but electric
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Fig. 4. 𝜏𝑠𝑜𝑙 and 𝜏𝑣𝑖𝑠 values of Thermochromic glazing at different temperatures for one simulation (Top). Approximated 𝜏𝑠𝑜𝑙 and 𝜏𝑣𝑖𝑠 values for simulations for the optimization
problem (Bottom).

Fig. 5. Error value distribution plot for the test sample in Copenhagen’s climate (Top), and Lisbon (Bottom).
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Fig. 6. Hourly heating and cooling, and Electric lighting Rate for Copenhagen (Top) and Lisbon (Bottom).
lighting dependence would increase for the office users to have the
required 500 lux for their activities. Fig. 10E shows the TCG solution
that provides the minimum total energy consumption. It is visible that
the minimum energy use is provided by a TCG 𝜏𝑠𝑜𝑙𝑚𝑎𝑥 and 𝜏𝑣𝑖𝑠𝑚𝑎𝑥 of ≈
0.6 that transition to ≈ 0.3, and 0 from ≈ 25 to ≈ 65 ◦C. These values
grant the optimal balance between thermal and lighting energy use that
provides the minimum total energy consumption. Fig. 10F shows the
TCG solution that yields minimum lighting energy use. In this plot, it is
noticed that the TCG initial temperature of transition is ≈ 45 ◦C, which
is significantly higher than Fig. 10D or Fig. 10E. The final transition
temperature of ≈ 90 ◦C, and 𝜏𝑠𝑜𝑙𝑚𝑎𝑥 and 𝜏𝑣𝑖𝑠𝑚𝑎𝑥 are higher than D or E
since higher 𝜏𝑠𝑜𝑙 and 𝜏𝑣𝑖𝑠 values increase daylighting.

These trade-offs are marginally less perceptible in cold climates,
but they are still present. Fig. 10A shows the optimal TCG solution
that yields minimum heating and cooling energy use for Copenhagen’s
climate. This TCG solution shows initial and final transition tempera-
tures of ≈ 15 ◦C and ≈ 45 ◦C respectively. Additionally, 𝜏𝑠𝑜𝑙 and 𝜏𝑣𝑖𝑠
values range from ≈ 0.9 to ≈ 0.2, and from ≈ 0.9 to 0, respectively.
Fig. 10B shows the TCG solution that returns the minimum total energy
consumption. It is visible that it has the same temperature ranges as
Fig. 10A, but its 𝜏𝑠𝑜𝑙 and 𝜏𝑣𝑖𝑠 values range from ≈ 0.9 to ≈ 0.3, and from
≈ 0.9 to ≈0 respectively. Finally, Fig. 10C represents the optimal TCG
solution that returns the minimum lighting energy use. It is visible that
Fig. 10C has a slope similar to Fig. 10F but a lower initial transition
temperature of ≈ 15 ◦C (same as A and B), and a final transition
temperature of ≈ 82 ◦C. 𝜏𝑠𝑜𝑙 and 𝜏𝑣𝑖𝑠 ranges are similar to plots D and
E except for the final 𝜏𝑠𝑜𝑙 value of ≈ 0.35.

As seen, 𝑇𝑐 values and steeper 𝜏𝑠𝑜𝑙 variations do not represent a
smaller energy consumption for both climates. Particularly for cold
climates, a 𝑇𝑚𝑖𝑛, 𝑇𝑚𝑎𝑥, 𝜏𝑠𝑜𝑙𝑚𝑖𝑛, and 𝜏𝑠𝑜𝑙𝑚𝑎𝑥 values of 15 ◦C, 45 ◦C, 0.9,
and 0.2 respectively, yield the minimum total energy use. Whereas
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for warm climates, the minimum total energy use is obtained with a
𝑇𝑚𝑖𝑛, 𝑇𝑚𝑎𝑥, 𝜏𝑠𝑜𝑙𝑚𝑖𝑛, and 𝜏𝑠𝑜𝑙𝑚𝑎𝑥 values of 25 ◦C, 65 ◦C, 0.6, and 0.23
respectively.

3.1. Critical discussion and limitations

The added value of this work lies in (1) the MOO approach of the
TCG and (2) the use of surrogate models to speed up the simulation.

For (1), to the authors best knowledge, there are no similar studies
that perform optimization of theoretical TCG properties. Saeli et al.
(2010) test 4 TCG solutions with different sizes and properties for 8
climates. Results show a better energy performance in warmer climates
with lower 𝑇𝑐 (38.5 ◦C). Warwick et al. (2015) performed a parametric
sensitivity analysis with the aim to find the best TCG properties. The
authors perform a parametric study of 4 different 𝑇𝑐 values, and 4
different hysteresis widths in 3 different climates. Results show the best
energy performance in warmer climates for a TCG with low 𝑇𝑐 (35 ◦C)
and a narrow switching temperature range.

The present study goes one step further since it explores thousands
of possible properties for theoretical TCG with the MOO approach. In
agreement with the previous findings, results show a better energy
performance for warmer climates. However, not also the optimum 𝑇𝑐
(45 ◦C) value was slightly higher, but also the switching temperature
range was wider than previous findings. This could be explained by the
vast theoretical TCG explored with the MOO approach, which identified
TCG solutions with slightly lower 𝜏 that gradually switched to darker
states. Thus, it did not activate the 500 lux lighting set-point as fast.

For (2), the use of the surrogate models to predict theoretical TCG
solutions energy performance made it possible to considerably speed-
up the TCG simulation time. Therefore, the optimization algorithms
were able to converge in optimum solutions requiring significantly less

computational time.
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Fig. 7. Tested solutions with NSGAII for Copenhagen (Top) and Lisbon (bottom). Results for each objective (x- and y-axis) and the sum of both objectives (z-axis).
Overall, these results show that TCG optimal solutions have dif-
ferent properties for different climates and could benefit from bench-
marking these different performances to help manufacturers tailor TCG
properties for local climates. The observed increase of 200% in the
electric lighting energy needs could be explained by the optimum
theoretical TCG for 𝑓1 consisting of a significantly low 𝜏𝑠𝑜𝑙 and 𝜏𝑣𝑖𝑠 that
is constantly darkened, thus contributing to higher electrical lighting
energy needs.

The following limitations could have influenced the obtained results
in Section 3 as well as constrain the drawn conclusions: climates
studied; geometry and location of the case study; and all the simula-
tion inputs included in Table 2. Additionally, the indoor daylighting
illuminance was calculated with Energyplus (USDOE, 2021) that uses
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the split-flux method (Hopkinson et al., 1954), which is suitable to
assess rooms with a cubical shape and no internal partitions such as
the case of the office room in this study. This method is used during the
simulation to control the electric lighting by estimating the illuminance
levels at a single reference point. Other advanced simulation methods
(e.g., Radiance) should be used to perform a more detailed spatial
daylighting analysis.

4. Conclusions

After performing a multi-objective optimization with the goal of
finding the best combination of theoretical thermochromic glazing
(TCG) properties, results show different optimal solutions that mini-
mize both the electric lighting energy needs and heating and cooling
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Fig. 8. Office energy use for the Optimum thermochromic glazing of the proposed goals. Comparison with the original in Copenhagen (Top) and Lisbon climate (Bottom).
Fig. 9. Pareto front plot of non-dominated solutions of the optimization problem for Copenhagen (left) and Lisbon climate (right). Results are mapped according to their 𝑇𝑐 and
𝛥𝜏𝑠𝑜𝑙 values in color and size, respectively.
energy needs of an office room for Lisbon and Copenhagen climates.
Additionally, the presented study shows how minimum transition tem-
peratures and transmittance values minimize heating and cooling en-
ergy use while being capable of increasing the electric lighting energy
needs by 200%. The opposite is obtained for the lighting energy use
with high transition temperatures and transmittance values. When
compared with an off-the-market TCG, optimal solutions managed to
improve the office total energy use by 7% and 15% for Copenhagen
and Lisbon climate respectively. These results demonstrate: (1) that the
minimum total energy consumption requires a TCG with balanced and
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specific properties for each climate, and (2) how the properties of a
TCG inversely impact both the zone’s electric lighting, and heating and
cooling energy needs. This process can help guide TCG manufacturing
according to these optimum properties.

Since there are optimal TCG properties for different climate zones,
future developments in the TCG field must be focused on bench-
marking different optimal TCGs for different climate zones, and in
production processes that allow the manipulation of transition temper-
atures and hysteresis loops. Further research is planned to investigate
the economic impact of different TCG systems at the building and urban
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Fig. 10. Thermochromic glazing properties for each optimal solution in both climates. Copenhagen: (A) minimum heating and cooling needs, (B) Minimum total energy needs,
(C) Minimum lighting needs; Lisbon: D, E, F, respectively.
levels and compare them with other smart glazing technologies for the
AEC industry.
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